• Title/Summary/Keyword: 단백질 세포내 위치

Search Result 106, Processing Time 0.03 seconds

Kinesin Superfamily Protein 5A (KIF5A) Binds to ArfGAP1, ADP-ribosylation Factor GTPase-activating Protein 1 (Kinesin Superfamily Protein 5A (KIF5A)와 ADP-ribosylation Factor GTPase-activating Protein 1 (ArfGAP1)의 결합)

  • Myoung Hun Kim;Se Young Pyo;Eun Joo Chung;Young Joo Jeong;Sung Woo Park;Mi Kyoung Seo;Won Hee Lee;Sang-Hwa Urm;Mooseong Kim;Dae-Hyun Seog
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.333-338
    • /
    • 2024
  • Kinesin-1 is a heterotetrameric protein composed of two heavy chains (KHCs, also known as KIF5s) with a motor domain and two light chains (KLCs) without a motor domain. KIF5 has three subtypes, namely, KIF5A, KIF5B, and KIF5C, which share high amino acid homology except in their carboxy (C)-terminal region. KIF5A is responsible for transporting cargo within the cell. The adaptor proteins that bind to the C-terminal region of KIF5A mediate between kinesin-1 and cargo. However, the proteins regulating the intracellular cargo transport of kinesin-1 have not yet been fully identified. In this study, we identified ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1), which is involved in the intracellular trafficking of lysosomes, as a binding partner of KIF5A. KIF5A binds to the C-terminal region of ArfGAP1, and ArfGAP1 binds to the C-terminal region of KIF5A but does not interact with KIF5B, KIF5C, kinesin light chain 1 (KLC1), or KIF3A. When co-expressed in mammalian cells, ArfGAP1 co-localized with KIF5A and co-immunoprecipitated with KIF5A, KIF5B, and KLC1, but not with KIF3B. These results suggest that kinesin-1 may be regulated by ArfGAP1 in the intracellular transport of cargo.

Enhancement of Bacteriocin Production by Bacillus subtilis cx1 in the Presence of Bacillus subtilis ATCC6633 (Bacillus subtilis ATCC6633이 Bacillus subtilis cx1의 박테리오신 생산에 미치는 유도효과)

  • Chang Mi;Chang Hae-Choon
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.221-227
    • /
    • 2006
  • BSCX1 was an antimicrobial peptide produced by Bacillus subtilis cx1. Attempts were made to determine the location of inducing factor in the bacteriocin-sensitive cell affecting bacteriocin BSCX1 production. Mixed culture of the bacteriocin producer strain B. subtilis cx1 and its sensitive strain B. subtilis ATCC6633, increased production of bacteriocin BSCX1. The result suggested the presence of a bacteriocin inducing factor in the sensitive strain. The inducing factor was localized in the cell debris and intracellular fraction of B. subtilis ATCC6633. Bacteriocin BSCX1 inducing factor was found to be highly stable in the pH range 2.5-9.5, but inactivated within 3h over $50^{\circ}C$, and treatment with proteinase K destroyed its inducing activity, this result suggested that the inducing factor should be a proteinaceous nature.

Expression of c-Jun N-Terminal Kinase (JNK)-Interacting Protein (JIP) in Cultured Rat Hippocampal Neurons (배양한 흰쥐 해마신경세포에서 c-Jun N-terminal kinase (JNK)-interacting protein (JIP)의 표현)

  • Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1627-1633
    • /
    • 2007
  • c-Jun N-terminal kinase (JNK)-interacting protein 1 (JIP1), also known as Islet-brain 1 (IB1), is a scaffold protein that is highly expressed in neurons and pancreatic ${\beta}-cells$. In this study subcellular localization of JIP was investigated in cultured rat hippocampal neurons using an antibody that recognize all variants of JIP1, JIP-2 and JIP-3. The overall expression profile of JIP is punctate throughout soma and dendrites. Statistic analysis showed that $54.8{\pm}4.0%\;and\;94.1{\pm}4.5%$ of total JIP immunopuncta overlapped with those of excitatory postsynaptic markers SD-95 and ${\alpha}Camik$, respectively. In contrast, only $8.6{\pm}0.5%\;and\;7.3{\pm}0.5%$ of JIP clusters overlapped with those of inhibitory postsynaptic markers glycine receptor (GlyR) and gephyrin, respectively. JIP clusters overlapped or juxtaposed with SV2 but not GAD, markers for general and inhibitory nerve terminals, respectively. A substantial fraction $(29.3{\pm}1.0%)$ of flotillin immunopuncta, a marker for lipid rafts, clusters overlapped with those of JIP. In addition, JIP was highly expressed in some select ends of dendrites but minimal in axons. These data suggest important roles of JIP in excitatory postsynaptic sites, lipid rafts and dendritic ends.

Comparison of Oligosaccharyltransferase Assay Methods Using a Fluorescent Peptide (형광펩타이드를 이용한 Oligosaccharyltransferase Assay 방법 연구)

  • Kim, Seong-Hun
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.96-103
    • /
    • 2010
  • Oligosaccharyltransferase (OTase) catalyzes the transfer of a lipid-linked oligosaccharide (LLO) to the nascent polypeptide. Most eukaryotes have an OTase composed of a multisubunit protein complex. However, the kinetoplastid Leishmania major and the bacterium Campylobacter jejuni have only a single subunit for OTase activity, Stt3p and PglB, respectively. In this study, a new in vitro assay for OTase was developed by using a fluorescent peptide containing N-glycosylation sequon, Asn-Xaa-Thr/Ser, where Xaa can be any amino acid residue except Pro. L. major Stt3p and C. jejuni PglB as a model OTase enzyme demonstrated the formation of glycopeptides from a fluorescent peptide through OTase activities. For separation and measurement of the glycopeptides produced by the OTases, Tricine-SDS-PAGE, a lectin column and fluorospectrophotometer, and HPLC were applied. Comparison of these assay methods for analyzing a fluorescent glycopeptide showed HPLC analysis is the best method for separation of glycopeptides and nonglycosylated peptides as well as for quantify the peptides than other methods.

Molecular Diversity of pagA Gene from Baciilus anthracis (탄저균 pagA 유전자의 분자적 다양성)

  • 김성주;조기승;최영길;채영규
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.49-55
    • /
    • 2001
  • Bacillus anthracis is a gram-positive spore-forming bacterium that causes the disease anthrax. The anthrax toxin contains three components, including the protective antigen (PA), which binds to eucaryotic cell surface receptors and mediates the transport of toxins into the cell. In this study, the entire 2,294-nucleotide protective antigen gene (pag) was sequenced from 4 of B. anthracis strains to identify potential variation in the toxin and to further our understanding of B. anthracis evolution in Korea. Sequence alignment of the entire PA gene from 30 strains representative of the four B. anthracis diversity groups revealed mutations. The mutation of B. anthracis BAK are located adjacent to a highly antigenic region crossing the junction between PA domains 3 and 4 shown to be critical to LF binding. The different mutational combinations observed in this study give rise to 11 PA genotypes and 4PA phenotypes. Three-dimensional analysis of all the amino acid changes (Ala to Val) observed in BAK indicated that these changes are not only close sequentially but also very close in three-dimensional space to the antigenic region importan tfor LF binding. Phylogenetic (cladistic) analysis of the pag corresponded with previous strain grouping based on chromosomal variation, suggesting that plasmid evolution in B. anthracis has occurred with little or no horizontal transfer between the different strains.

  • PDF

Mammalian Reproduction and Pheromones (포유동물의 생식과 페로몬)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.10 no.3
    • /
    • pp.159-168
    • /
    • 2006
  • Rodents and many other mammals have two chemosensory systems that mediate responses to pheromones, the main and accessory olfactory system, MOS and AOS, respectively. The chemosensory neurons associated with the MOS are located in the main olfactory epithelium, while those associated with the AOS are located in the vomeronasal organ(VNO). Pheromonal odorants access the lumen of the VNO via canals in the roof of the mouth, and are largely thought to be nonvolatile. The main pheromone receptor proteins consist of two superfamilies, V1Rs and V2Rs, that are structurally distinct and unrelated to the olfactory receptors expressed in the main olfactory epithelium. These two type of receptors are seven transmembrane domain G-protein coupled proteins(V1R with $G_{{\alpha}i2}$, V2R with $G_{0\;{\alpha}}$). V2Rs are co-expressed with nonclassical MHC Ib genes(M10 and other 8 M1 family proteins). Other important molecular component of VNO neuron is a TrpC2, a cation channel protein of transient receptor potential(TRP) family and thought to have a crucial role in signal transduction. There are four types of pheromones in mammalian chemical communication - primers, signalers, modulators and releasers. Responses to these chemosignals can vary substantially within and between individuals. This variability can stem from the modulating effects of steroid hormones and/or non-steroid factors such as neurotransmitters on olfactory processing. Such modulation frequently augments or facilitates the effects that prevailing social and environmental conditions have on the reproductive axis. The best example is the pregnancy block effect(Bruce effect), caused by testosterone-dependent major urinary proteins(MUPs) in male mouse urine. Intriguingly, mouse GnRH neurons receive pheromone signals from both odor and pheromone relays in the brain and may also receive common odor signals. Though it is quite controversial, recent studies reveal a complex interplay between reproduction and other functions in which GnRH neurons appear to integrate information from multiple sources and modulate a variety of brain functions.

  • PDF

Production of the Polyclonal Antibody That Recognizes the Mutant M Protein of Japanese Encephalitis Virus: Role of Its Charged Residues in Virus Production (일본뇌염바이러스의 Mutant M 단백질에 반응하는 다클론항체의 생산: 극성 아미노산 잔기의 바이러스 생산과정에서의 역할)

  • Kim, Jeong-Min;Yun, Sang-Im;Song, Byung-Hak;Kim, Jin-Kyoung;Lee, Young-Min
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.140-147
    • /
    • 2010
  • Japanese encephalitis virus (JEV), a member of the mosquito-borne flaviviruses, causes epidemics of viral encephalitis in the Southeastern Asia. JEV is a small enveloped virus with a positive-sense RNA genome; the infectious virion consists of three structural proteins, namely capsid, membrane (M; a mature form of its prM precursor), and envelope proteins. Here, we investigated a role of the charged residues found at the N-terminus of the JEV M protein in virus production. Using an infectious JEV cDNA, we generated two mutant cDNAs, Mm1 and Mm2, by charged-to-alanine substitution for $E^9$ and $K^{15}K^{16}E^{17}$ residues of the M protein, respectively. By transfection of wild-type or each of the two mutant RNAs transcribed from the corresponding cDNAs, we found that Mm2, but not Mm1, had a ~3-log decrease in virus production, even though a comparable amount of all three structural proteins were produced in transfected cells. Interestingly, the prM protein expressed in Mm2 RNA-transfected cells was not recognized by the polyclonal antiserum raised against the N-terminal 44 amino acids of the wild type M protein, but reacted to the antiserum raised against the corresponding region of the mutant Mm2. Our results indicate that three charged residues ($K^{15}K^{16}E^{17}$) in JEV M protein play a role in virus production. Two polyclonal antisera specifically recognizing the wild-type or Mm2 version of the M protein would provide a useful reagent for the functional study of this protein in the virus life cycle.

Functional Role of $^{60}RR^{61}$ in 23S rRNA Methylation, Which is in N-Terminal End Region of ErmSF (ErmSF의 N-Terminal End Region에 존재하는 $^{60}RR^{61}$의 23S rRNA Methylation에서의 역할)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.193-198
    • /
    • 2008
  • ErmSF is one of the proteins which are produced by Streptomyces fradiae to avoid suicide by its autogenous macrolide antibiotic, tylosin and one of ERM proteins which are responsible for transferring the methyl group to $A_{2058}$ (Escherichia coli coordinate) in 23S rRNA, which reduces the affinity of MLS (macrolide-lincosamide-streptogramin B) antibiotics to 23S rRNA, thereby confers the antibiotic resistance on microorganisms ranging from antibiotic producers to pathogens. ErmSF contains an extra N-terminal end region (NTER), which is unique to ErmSF and 25% of amino acids of which is arginine known well to interact with RNA. Noticeably, arginine is concentrated in $^{58}RARR^{61}$ and functional role of each arginine in this motif was investigated through deletion and site-directed mutagenesis and the activity of mutant proteins in cell R60 and R61 was found to play an important role in enzyme activity through the study with deletion mutant up to R60 and R61. With the site-directed mutagenesis using deletion mutant of 1 to 59 (R60A, R61A, and RR60, 61AA), R60 was found more important than R61 but R61 was necessary for the proper activity of R60 and vice versa. And these amino acids were presumed to assume a secondary structure of $\alpha$-helix.

Expression of Osteopontin in Eutopic and Ectopic Endometrial Tissues in Endometriosis (자궁내막증 환자의 정상위치 및 이소성 자궁내막에서의 Osteopontin의 발현)

  • Koo, Yun-Hee;Kim, Chung-Hoon;Kim, Ji-Sun;Lee, Young-Jin;Kim, Sung-Hoon;Chae, Hee-Dong;Kang, Byung-Moon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.34 no.3
    • /
    • pp.149-157
    • /
    • 2007
  • Objective: This study was performed to compare the expression of osteopontin (OPN) mRNA and protein in the eutopic and ectopic endometrial tissues in women with endometriosis and endometrial tissues in women without endometriosis. Methods: A total of 32 women with histologically confirmed endometriosis were recruited for study group. For controls, 34 women undergoing operative treatment for cervical intraepithelial neoplasia (CIN) or benign gynecologic condition other than endometriosis were recruited. At the time of laparoscopy or laparotomy, a biopsy specimen was taken from the endometrial cavity and peritoneal endometrial implant or endometrioma whenever appropriate. We employed real time quantitative RT-PCR to quantify OPN mRNA expression of these tissues and performed western blot analysis to measure the quantity of OPN. Results: The expression of OPN mRNA was significantly higher in both eutopic and ectopic endometrial tissues of women with endometriosis than in endometrial tissues of controls during both proliferative and secretory phase. In the eutopic endometrial tissue of women with endometriosis, OPN mRNA expression significantly increased during the secretory phase compared to the proliferative phase in women with endometriosis as well as controls. However, in the ectopic endometrial tissue, OPN mRNA expression significantly decreased during the secretory phase compared to the proliferative phase. The expression of OPN protein was significantly higher in women with endometriosis than in controls. Conclusion: This study shows the marked expression of OPN mRNA and protein in eutopic and ectopic endometrial tissues in women with endometriosis may be associated with the adhesion and invasion of endometrial explants.

Regulation of Abiotic Stress Response by Alternative Splicing in Plants (식물에서 선택적 스플라이싱에 의한 스트레스 반응 조절)

  • Seok, Hye-Yeon;Lee, Sun-Young;Moon, Yong-Hwan
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.570-579
    • /
    • 2020
  • Pre-mRNA splicing is a crucial step for the expression of information encoded in eukaryotic genomes. Alternative splicing occurs when splice sites are differentially recognized and more than one transcript and potentially multiple proteins are generated from the same pre-mRNA. The decision on which splice sites are selected under particular cellular conditions is determined by the interaction of proteins, globally designated as splicing factors, that guide spliceosomal components, and thereby the spliceosome, to their respective splice sites. Abiotic stresses such as heat, cold, salt, drought, and hypoxia markedly alter alternative splicing patterns in plants, and these splicing events implement changes in gene expression for adaptive responses to adverse environments. Alteration of the expression or activity of splicing factors results in alternative splicing under cold, heat, salt, or drought conditions, and alternatively spliced isoforms respond distinctly in several aspects such as expression in different tissues or degradation via nonsense-mediated decay. Spliced isoforms may vary in their subcellular localization or have different biological functions under stress conditions. Despite numerous studies, functional analyses of alternative splicing have been limited to particular abiotic stresses; the molecular mechanism of alternative splicing in abiotic stress response remains uncovered which suggests that further studies are needed in this area.