단백질 사이의 상호작용 네트워크(PPI network: Protein-Protein Interaction network)를 이용하여 단백질 기능을 예측 하는 것은 단백질 기능 예측 기법들 중에서 중요한 작용을 한다. 하지만 PPI를 이용한 단백질 기능 예측은 기능의 복잡도와 다양성으로 인해 제한적인 결과를 나타내 왔다. 따라서 본 논문에서는 기존의 연구들 보다 높은 정확도로 단백질 기능을 예측하기 위해 기능 예측을 하려는 단백질과 상호작용 하는 단백질들에 그래프 마이닝 기법을 적용하여 빈발 2-노드 상호작용 패턴을 찾고, 그 패턴을 이용하여 단백질 기능을 예측하는 접근법을 제안하였다. 실험데이터로 DIP(Database of Interacting Proteins)에서 제공하는 단백질 상호작용 데이터를 사용하였으며, 다른 기존의 단백질 기능 예측 기법들보다 높은 정확도를 보여주었다.
단백질 상호작용 데이터는 현 생물정보학에서 기능이 알려지지 않은 단백질의 기능 예측에 높은 신뢰성이 있는 프로티오믹스의 계산 모델에 이용되고 있다. 일반적으로 이 단백질 기능 예측 알고리즘들은 대규모의 2차원 단백질-단백질 상호작용 맵에서 Guilt-by-Association 개념 기반으로 개발되고 있다. 본 논문에서는 단백질-단백질 상호작용 데이터를 이용한 그래프 기반 단백질 기능 예측 모델을 개발하였다. 특히, 이 모델은 대량의 상호작용 데이터에서 정확한 기능 예측을 수행할 수 있다는 장점을 가지고 있다. 이를 위해 Yeast에 대한 단백질 상호작용 맵, Homology 및 Interaction Generality를 이용하여 이 모델을 평가하였다.
생명체의 생명현상을 주관하는 각종 화학반응들은 단백질이 관여하고 있다. 단백질은 일정한 질서에 따라 서로 조립되기도 하고, 기능적으로 연관돼 네트워크를 이루고 있다. 이 네트워크를 구성하는 단백질-단백질 상호작용은 단백질의 기능과 밀접하게 관련되어 있다. 즉, 상호작용하는 단백질은 같은 기능을 수행할 가능성이 크다. 이러한 사실은 단백질-단백질 상호작용을 통해 기능이 알려지지 않은 미지 단백질의 기능을 예측할 수 있게 한다. 대표적인 연구로는 이웃 노드에 존재하는 기능분포를 이용하는 이웃노드 카운트(Neighborhood Counting)방식과 특정 기능의 나타날 빈도를 계산하여 기능을 예측하는 카이-제곱(Chi-Square)방식 등이 있다. 본 논문에서는 단백질 기능 예측의 정확성을 높이기 위해 이들 두 방식의 장점을 취합한 보완된 카이-제곱 방식을 제안한다. 그리고 다양한 단백질 상호작용 네트워크 데이터를 비교 분석하여 보완된 카이-제곱 방식이 기능 예측의 정확성이 높음을 증명한다.
단백질의 기능 예측 모델은 guilt-by-association 개념을 바탕으로 단백질-단백질 상호작용 맵을 이용하고 있다. 이 방법은 목표 단백질이 기능이 알려진 단백질과 상호작용이 없는 경우 기능 예측이 불가능하다. 본 논문에서는 단백질 기능 예측 모델을 K-class 다중 분류 문제로 재 정의하고 단백질-단백질 상호작용 데이터 및 단백질의 알려진 속성 등을 학습 모델에 이용한 단위신경망의 설계와 응용을 제안한다. 제안하는 모델은 Yeast 단백질 데이터의 기능 예측에서 단백질-단백질 상호작용 데이터를 이용하는 방법에 비해 분류 예측율에서 우수한 성능을 보였으며 또한 상호작용이 밝혀지지 않은 단백질의 기능 예측을 할 수 있다.
단백질의 서열 정보와 기능 정보의 양이 증가함에 따라 컴퓨터 실험을 통한 단백질의 기능 예측이 가능해졌으며 정확성이 높은 예측 시스템을 개발하려는 여러 연구가 시도되고 있다. 대표적인 방법으로 서열 유사도를 기반으로 기능 예측을 하는 시스템이 제안되었으나 단백질 중에는 서열이 유사하지만 기능이 다르거나 또는 서열은 다름에도 불구하고 기능이 같은 단백질이 존재하기 때문에 서열의 유사도 만을 이용해서는 단백질의 기능 예측을 어렵다. 이러한 유사도 방법의 단점을 극복하기 위해 단백질 서열로부터 추출한 특징을 기반으로 분류하는 방법도 제안되었다. 본 논문에서는 이러한 기존 방법들의 장점을 얻기 위하여 서열 유사도 방법과 특징 기반 방법을 융합한 단백질 기능 예측 시스템을 제안하고 예측 정확성 분석을 위한 실험을 실시하였다. 실험의 결과에 따르면 제안된 융합시스템이 서열 유사도만을 이용한 방법과 특징 기반 방법보다 좋은 예측 정확률을 갖는 것으로 분석되었다.
단백질 상호작용 데이터는 현 생물정보학에서 기능이 알려져 있지 않은 단백질의 기능 예측에 높은 신뢰성이 있는 프로티오믹스의 계산 모델에 이용되고 있다. 단백질 기능 예측 관련 연구로는 guilt-by-association 개념을 바탕으로 대규모의 단순 2차원 단백질-단백질 상호작용 맵을 이용하고 있다. 본 논문에서는 단백질-단백질 상호작용 데이터를 이용한 그래프 기반 기능 예측 방법인 neighbor-counting, $\chi^2$-통계치 예측 모델을 살펴보고 대량의 상호작용 데이터로부터 빠른 기능예측에 효과적인 알고리즘을 제안한다. 제안하는 알고리즘은 단백질 상호작용 맵, 서열 유사성 및 경험적 전문가 지식을 이용하는 그래프 기반 모델이다. 제안된 알고리즘은 Yeast 단백질의 기능 예측을 수행하였으며, neighbor-counting, $\chi^2$-통계치 모델의 실험 결과와 비교되었다.
유전 연구를 통해 밝혀지고 있는 단백질은 각각의 기능적 특성을 가지고 서로 영향을 주고받으며 상호 작용한다. 단백질의 기능적 특성은 생물체에서는 단백질이 나타내는 기능으로 단백질 이름은 이들 단백질의 기능을 정확히 나타낼 수 있도록 붙여진다. 기능적 특성에 의해 명명된 단백질은 단백질을 구성하는 단어도 단백질과 유사한 기능 특성을 가질 가능성이 높다. 이는 텍스트 기반의 연구에서 단어가 가지는 중요성에서 비롯된다. 본 논문에서는 단백질을 구성하는 단어들을 단백질의 기능적 특성으로 분류하고, 이 기능분포에 의해서 단백질의 기능을 역으로 예측하고 판단하고자 하였다.
유전체 분석에서 중요한 부분 중 하나는 기능이 알려지지 않은 미지 단백질에 대한 기능 예측이다. 단백질-단백질 상호작용 네트워크를 분석하는 것은 미지 단백질에 대한 기능을 보다 쉽게 예측할 수 있게 한다. 단백질-단백질 상호작용 네트워크로부터 미지 단백질의 기능을 예측하기 위한 다양한 연구들이 시도되어 왔다. 카이-제곱(Chi-square) 방식은 단백질-단백질 상호작용 네트워크를 통해 기능을 예측하고자 하는 연구 중 대표적인 방식이다. 하지만 카이-제곱 방식은 네트워크의 토폴로지를 반영하지 않아 네트워크 크기에 따라 예측의 정확성이 떨어지는 문제점이 있다. 따라서 본 논문에서는 카이-제곱 방식을 보완하여 정확성을 높인 새로운 기능 예측 방법을 제안한다 이를 위해 MIPS, DIP 그리고 SGD와 같은 공개된 단백질 상호작용 데이터베이스들로부터 데이터를 수집하여 분석하였다. 그리고 제안된 방식의 우수성을 입증하기 위해 각 데이터베이스들에 대해 카이-제곱방식과 제안하는 보완된 카이-제곱(Modified Chi-square)방식으로 예측해보고 이들의 정확성을 평가하였다.
모든 생명체는 유전자의 최종 산물인 다양한 단백질들이 각각의 복잡한 기능을 수행함과 동시에 그들 사이의 긴밀한 상호작용에 의해 생명을 유지한다. 도메인 (Domain)은 단백질의 기능적 단위로서 한 개 단백질은 최대 수십 개의 도메인을 가지는데 이들 도메인에 대한 정보는 단백질의 기능을 예측하는데 도움이 될 수 있다. 본 논문에서는 종양을 억제하는 기능을 가지는 단백질과 그러한 기능을 가질 것으로 추정되어지는 단백질의 아미노산 서열, 또 기능이 밝혀지지 않은 미지의 아미노산 서열을 가지고 이미 밝혀져 있는 도메인 서열과 비교 검색하여 이들 사이에 일치하는 도메인을 통하여 표적 단백질의 기능 동정에 관한 연구에 도움이 되며, 또한 기능이 밝혀지지 않은 아미노산 서열의 도메인을 검색하여 새로운 기능을 예측함으로써 다른 실험적 방법과 비교하여 시간과 비용을 절약할 수 있는 효과적인 방법을 얻었기에 제안하고자 한다.
생명현상을 이해하기 위해서는 단백질의 기능 규명이 이루어져야한다. 단백질 기능 규명을 위한 서열분석 방법은 서열 상동성이 현저히 낮은 경우 단백질 기능 예측이 불가능하고, 과거의 전체적인 단백질 구조 분석을 통한 기능 예측의 문제점이 보고되고 있다. 이 논문에서는 기능상 중요한 의미를 가지고 있는 단백질의 특정하위구조의 기하학적 특징을 추출하여 이 특징과 잔기의 위치와의 관계를 규명하였다. 또한 NaiveBayes, SVM, C4.5의 분류알고리즘을 이용하여 각 알고리즘별 분류성능을 평가하였다. 기능상 중요한 의미를 가지고 있는 특정하위구조를 비교함으로써 모르는 단백질의 기능을 예측할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.