• Title/Summary/Keyword: 단백석

Search Result 69, Processing Time 0.025 seconds

Low-temperature Hydrothermal Synthesis of Organic Smectite from Siliceous Mudstone (규질 이암으로부터 유기 스멕타이트의 저온 수열합성)

  • 노진환
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.49-59
    • /
    • 2004
  • Organic smectite was hydrothermally synthesized by treating the opal-rich siliceous mudstone from the Pohang area with TMAOH solutions and 1:1 solutions of TMAOH+NaOH at $80^{\circ}C$ and concentrations ranging 10∼15%. Smectite was solely formed without accompanying any mineral products in case of TMAOH, whereas NaP and hydroxysodalite was synthesized together with smectite under the blending solution of TMAOH+NaOH. The synthesized smectite is identified as an organic smectite intercalating $TMA^{+}$ within its interlayer site, specifically corresponding to monmorillonite species, through mineralogical characterization by XRD, DTA, and IR analyses. The experimental results indicate that main precursor of the synthesized smectite is undoubtedly opal-CT, and the original sedimentary smectite included as considerable amounts in the mudstone seems to play a major role as Al-sources necessary far the smectite formation. Original inert components such as quartz and mica do not affect mostly to the synthesis reaction, and thus, are resultantly found as impurities in the synthetic products. These experimental results may imply that a new effective method for the low-temperature (less than $100^{\circ}C$) hydrothermal synthesis of organic smectite will be established if some Al-sources adequate for this synthetic system are available.

Stratigraphy, Lithology and Diagenetic Mineral Facies of the Tertiary Yeonil Group (제 3기 연일층군의 층서, 암상 및 속성 광물상)

  • Noh Jin Hwan
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.91-99
    • /
    • 1994
  • In the Heunghae area, genetic relationships among sedimentary facies, lithology, stratigraphy and diagenetic mineral facies of the Yeonil Group, are discussed. Conglomerate and sandstone of lower to middle parts of the Yeonil Group contain considerable amounts of volcaniclastic sediments, which were derived from the Tertiary volcanics exposed in the western margins of the sedimentary basin. A new stratigraphic division of the Yeonil Group into the Chunbuk and Pohang Formations is proposed on the basis of sedimentary facies, lithologic characteristics including volcaniclastic feature, and the presence of a key bed of siliceous mudstone overlying the Chunbuk Formation. Diagenetic mineral facies largely depend on the lithology and composition of sediments. Heulandite, smectite, calcite, and opal-CT are commonly found as diagenetic minerals in the Yeonil Group. Among these authigenic minerals, heulandite occurs as the coarse- grained main cement in conglomerates and sandstones of the Chunbuk Formation. Formation of the zeolite cement is favored by partial volcaniclastic lithology of the Chunbuk Formation. Smectite composition and diagenetic mineral facies such as heulandite and opal-CT may reflect that the Yeoil Group has undergone a shallow rial temperature ranging $40{\~}60^{\circ}C$.

  • PDF

Single Cell Protein Production from Chinese Cabbage Juice (배추를 이용한 단세포단백질의 생산)

  • Lee, Nam-Seok;Kyung, Kyu-Hang
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.646-648
    • /
    • 1991
  • A possibility of utilizing Chinese cabbage, a kind of renewable resources which is frequently overproduced in Korea, for the production of single cell protein was investigated. Saccharomyces cerevisiae and Candida utilis grew well in cabbage juice producing 4.3 and 5.1 g/l of dried yeast cells, respectively. Freezing fresh cabbage prior to juice extraction did not affect the growth of yeasts and the final cell yield.

  • PDF

Applied-Mineralogical Characterization and Assessment of Some Domestic Bentonites (I): Mineral Composition and Characteristics, Cation Exchange Properties, and Their Relationships (국내산 벤토나이트에 대한 응용광물학적 특성 평가 (I): 광물 조성 및 특징과 양이온 교환특성과의 연계성)

  • 노진환
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.329-344
    • /
    • 2002
  • Mineralogical and chemical characterization of some domestic bentonites, such as quantitative XRD analysis, chemical leaching experiments, pH and CEC determinations, were done without any separation procedures to understand their relationships among mineral composition, characteristics, and cation exchange properties. XRD quantification results based on Rietveld method reveal that the bentonites contain totally more than 25 wt% of impurities, such as zeolites, opal-CT, and feldspars, in addition to montmorillonite ranging 30~75 wt%. Cation exchange properties of the zeolitic bentonites are deeply affected by the content of zeolites identified as clinoptilolite-heulandite series. Clinoptilolite is common in the silicic bentonites with lighter color. and occurs closely in association with opal-CT. Ca is mostly the dominant exchangeable cation, but some zeolitic bentonites have K as a major exchangeable cation, The values of cation exchange capacity (CEC) determined by Methylene Blue method are comparatively low and have roughly a linear relationship with the montmorillonite content of the bentonite, though the correlated data tend to be rather dispersed. Compared to this, the CEC determined by Ammonium Acetate method, i.e.‘Total CEC’, has much higher values (50~115 meq/100 g). The differences between those CEC values are much greater in zeolitic bentonites, which obviously indicates the CEC increase affected by zeolite. Other impurities such as opal-CT and feldspars seem to affect insignificantly on the CEC of bentonites. When dispersed in distilled water, the pH of bentonites roughly tends to increase up to 9.3 with increasing the alkali abundance, especially Na, in exchangeable cation composition. However, some bentonites exhibit lower pH (5~6) so as to regard as ‘acid clay’. This may be due to the presence of $H^{+}$ in part as an exchangeable cation in the layer site of montmorillonite. All the works of this study ultimately suggest that an assesment of domestic bentonites in grade and quality should be accomplished through the quantitative XRD analysis and the ‘Total CEC’measurement.

Occurrence and Applied-mineralogical Characterization of Diatomite from the Pohang-Gampo Area (포항-감포 지역산 규조토의 산출상태와 응용광물학적 특성)

  • Noh, Jin-Hwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.311-324
    • /
    • 2006
  • In the Pohang-Gampo area, several diatomite beds occurred in mostly thinner than 1 m are embedded in the Pohang Formation of marine environment and the pyroclastic Eoil Formation. The diatomite from the Eoil Formation is constituting the high-grade ore altered slightly by diagenesis. In contrast, the diatomite intercalated within the upper horizon of the Yeonil Group is comparatively low-grade and highly altered in places. During diagenesis, an increasing of crystallinity of opal, i.e., the original mineral component of diatom, results in ultimately the mineral transition to quartz with accompanying a drastic change in morphology and texture of the altered diatomite. The diagenetic alteration appears to have undergone by way of the chemical diagenesis, which is largely controlled by degree of fluid contact, rather than burial diagenesis. For the diatomite from the Pohang-Gampo area, careful SEM observations, XRD, chemical analyses, and determination of specific surface area were done to identify the fossil species, mineral and chemical composition, and other physical properties in the view of assesment of grade and quality. The domestic diatomite ores are evaluated to be not good in grade and quality, compared to those of famous foreign localities. However, some diatomite deposits of marin,: origin from the Pohang Formation is constituting a peculiar clay-rich type, i.e., moler applicable to the special usage such as a manufacturing of lightweight brick. Because such a diatomite is frequently intercalated relatively as a thicker bed in the upper part of the Yeonil Group, a systematic and careful investigation should be done for the exploitation and development of an economic diatomite deposit of the moler type.

Application of Data Cube to Identify Differentially Expressed Proteins by Disease (질병 의존 단백질 도출을 위한 데이터 큐브의 응용)

  • 김단비;이원석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.268-270
    • /
    • 2004
  • 주어진 셀이나 조직에 발현된 단백질 프로파일의 구조적인 분석을 다루는 단백질체학(Proteomics) 연구에 있어서, 질병에 대한 마커 단백질(marker proteins)을 도출(identification)하는 것은 핵심 논점 중 하나이다. 수십 개의 샘플로부터 추출한 셀이나 조직 내에는 수많은 단백질이 포함되어 있으며, 존재하는 단백질의 질병에 의한 발현량(expression level) 변화 및 임상 특성에 의한 영향을 분석하기 위해서 데이터베이스와 데이터 마이닝 기술의 활용이 효과적이다. 본 논문에서는 질병 일 임상 특성에 따른 단백질의 발현량 변화를 분석하기 위한 OLAP 데이터 큐브(Data cube)의 응용 방법과 단백질 데이터의 분석에 적합한 척도(measure)를 제안하고, 유효성을 보인다.

  • PDF

Peritoneal Protein Loss in Nephrotic Syndrome on Peritoneal Dialysis (복막 투석 중인 신증후군 환자의 복막을 통한 단백 소실)

  • Ahn, Yo-Han;Jung, Eui-Seok;Lee, Se-Eun;Lee, Hyun-Gyung;Lee, So-Hee;Kang, Hee-Gyung;Ha, Il-Soo;Jung, Hae-Il;Choi, Yong
    • Childhood Kidney Diseases
    • /
    • v.13 no.2
    • /
    • pp.189-196
    • /
    • 2009
  • Purpose : The pathophysiologic mechanism of nephrotic syndrome is not yet known clearly. At least in some cases, certain 'circulating factors' are thought to increase the glomerular protein permeability. Considering the systemic effect of the circulating factor on peritoneal membrane, we evaluated the loss of protein through peritoneal membrane in patients on peritoneal dialysis due to the end stage renal disease (ESRD) caused by steroid resistant nephrotic syndrome (SRNS). Methods : We retrospectively reviewed the medical records of 26 pediatric patients on peritoneal dialysis ensued during the period from 2001 to 2007 at our clinic. Twelve patients had SRNS, while 14 patients had ESRD caused by the congenital anomalies of urinary system. Results : While the other parameters including nPNA indicating the adequacy of protein intake were similar between the two groups, serum albumin was lower in SRNS patients than the non-SRNS patients ($3.7{\pm}0.3$ g/dL vs. $4.0{\pm}0.4$ g/dL, P=0.021). Peritoneal protein loss was higher in SRNS patients than in non-SRNS patients ($3,044.4{\pm}837.6\;mg/m^2$/day vs. $1,791.6{\pm}1,244.0\;mg/m^2$/day, P=0.007). The protein permeability of the peritoneal membrane measured by the ratio of total protein concentration in dialysate to plasma was twice as high in SRNS patients as the non-SRNS ($1.06{\pm}0.46%$ vs. $0.58{\pm}0.43%$, P=0.010). After 1 year, peritoneal protein loss increased in both patient groups, but to a significantly greater degree in non-SRNS patient (P=0.023). Conclusion : The results of our study support the notion that in nephrotic syndrome there are some 'circulating factors' with the systemic effect. Since the greater protein loss through peritoneal membrane in SRNS was confirmed in this study, more meticulous nutritional support and close monitoring on the nutrition are required in these patients.

Occurrence and Mineralogical Properties of Green-Blue Inorganic Pigments in Korea (국내 녹색-청색계열 무기안료의 산출과 광물학적 특성)

  • Jeong, Gi Young;Cho, Hyen Goo;Do, Jin Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.33-46
    • /
    • 2018
  • Traditional inorganic pigments applied to dancheong, buddhist painting, and wall painting were produced from natural minerals which were later replaced by synthetic pigments, resulting in the loss of the recipe to prepare mineral pigments. This study examined the domestic occurrence and mineralogical characteristics of green and blue mineral pigments required for the conservation of cultural heritage. Cuprous green-blue mineral pigments were found as the weathering products of waste dumps and ores of abandoned Cu-Pb-Zn sulfide mines. Mineralogical analyses using X-ray diffraction and scanning electron microscopy identified diverse hydrous copper sulfate pigments of green (brochantite and devilline) and blue color (linarite, bechererite, and schulenbergite) with minor green pigments of antlerite and atacamite commonly associated with cerussite, smithsonite, anglesite, and cuprite. Noerok, a green silicate pigment, replaced the fractured basalt lava. Celadonite was responsible for the green color of Noerok, closely associated with opal in varying ratio. Glauconite, green silicate pigment, was identified in the Yellow Sea sediments. Malachite and azurite, the most important green and blue pigments of Korean cultural heritage, were not identified in this study.