• Title/Summary/Keyword: 단기예측

Search Result 708, Processing Time 0.037 seconds

Study on the Short-Term Rainfall and their Dam Inflow Application (단기 예측강우와 댐 유입량 예측 적용성에 관한 연구)

  • Byun, Dong-Hyun;Kim, Jin-Hoon;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1063-1067
    • /
    • 2008
  • 최근 국지적 집중호우로 인한 인명과 재산피해가 증가하고 있는 실정이며 이러한 피해를 경감하기 위한 하나의 방책으로써 홍수예경보 시스템 구축에 관한 관심이 증가하고 있다. 기존의 홍수예보 시스템은 강우의 실제 관측치를 모형의 입력자료로 하여 홍수유출을 계산함으로 인해 예보시간이 촉박하였다. 실시간 강우를 이용하여 유출계산을 수행하고 그 결과가 위험하다고 판단될 때 홍수예경보를 하므로 집중호우와 같은 악기상 조건에서는 적용에 한계가 있다. 따라서 정확한 기상예보를 활용한 기상-수자원 연계기법을 개발하여 홍수예경보 시스템에 적용한다면 악기상 감시예측기술의 향상과 더불어 재해의 방지차원에서 매우 유용한 대책이 될 것이다. 이에 본 연구에서는 단기 예측강우의 국내유역 적용성 여부를 검토하기 위해 30km의 공간 해상도를 가진 단기지역예보모델인 RDAPS(Regional Data Assimilation and Prediction System) 강수자료를 활용하여 기상학적 및 수문학적 정확도를 분석하였으며, 이를 바탕으로 예측강수의 높은 활용성이 기대되는 실제 한강수계의 주요 댐 지점에 HEC-1 모형을 이용하여 댐 유입량을 산정하고 그 적용성을 평가하고자 한다.

  • PDF

Short-Term Rainfall Forecast Using Artificial Neural Network and CAPPI (인공신경망과 CAPPI 자료를 이용한 단기 강우예측)

  • Jee, Gye-Hwan;Oh, Kyoung-Doo;Ahn, Won-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.72-76
    • /
    • 2011
  • 본 연구는 레이더 강우 영상에서 추출된 강우 패턴을 인공신경망으로 처리하여 단기 강우 예측을 수행하는 방안을 제시한 것이다. 본 연구에 활용한 CAPPI 영상자료로는 편차 보정과 품질 관리가 이루어지고 있으며 획득이 용이한 기상청 자료를 이용하였으며 CAPPI의 PNG 영상으로부터 강우 패턴을 추출하고, 이를 역전파 알고리즘의 인공신경망 강우 예측 모형에 학습시켜 단기 강우를 예측하기 위한 절차를 제시하였다. 이를 위하여 강우의 시공간적 변화 패턴 추출을 위한 영상 처리와 GIS 자료처리 기법을 제시하였고 이를 인공신경망의 단기 강우 예측 학습과 검증에 적용하여 본 연구에서 제시된 기법의 타당성을 검토하였다.

  • PDF

Assessment on the Application of Short-Term Forecast Rainfall for Dam Operation on Flooding Season (홍수기 댐 운영을 위한 단기 예측강우의 적용성 평가)

  • Byun, Dong-Hyun;Kim, Jin-Hoon;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.42-46
    • /
    • 2009
  • 최근 국지적 집중호우로 인한 인명과 재산피해가 증가하고 있는 실정이며 이러한 피해를 경감하기 위한 하나의 방책으로써 홍수예경보 시스템 구축의 관심이 늘어나고 있다. 그러나, 기존의 홍수예측 시스템은 강우관측치를 모형의 입력 자료로 홍수유출을 계산하는데, 집중호우와 같은 악기상 조건에서는 관측강우자료를 이용한 유출해석 결과를 이용하여 홍수예경보 시스템을 운영할 경우 예방 대응시간의 부족으로 인해 방재 효율성이 떨어지는 한계성을 지니고 있다. 이와 같은 상황에서 정확한 기상예보를 활용한 기상-수자원 연계기법을 개발하여 홍수예경보 시스템에 적용한다면 악기상 감시예측기술의 향상과 더불어 재해의 방지차원에서 매우 유용한 대책이 될 뿐만 아니라 그 활용성을 극대화 시킨다면 수자원분야의 치수기 홍수예측 등에 매우 유용하게 활용될 수 것이다. 이에 본 연구에서는 모형의 입력으로 활용되는 단기 예측강우의 국내 적용성 여부를 검토하기 위해 30km의 공간해상도를 가진 단기지역예보모델인 RDAPS(Regional Data Assimilation and Prediction System) 예측강우 자료에 대하여 수문학적 정확도 분석을 수행하였으며, 예측강우의 정확도 향상을 위한 편차보정 방법을 개발 적용하였다. 또한 산정된 예측강우를 바탕으로 HEC-1 모델과의 연계방안을 제안하고 이를 이용하여 한강수계 주요 댐유역의 예측유입량을 산정, 댐 운영에 대한 적용성을 판단하고자 한다.

  • PDF

Neuro-Fuzzy Model based Short-Term Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting (뉴로-퍼지 모델 기반 단기 전력 수요 예측시스템: 시간, 일간, 주간 단위 예측)

  • Park, Young-Jin;Choi, Jae-Gyun;Wang, Bo-Hyeun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.323-326
    • /
    • 2001
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용하여 단기 전력 수요 예측시스템을 개발하기 위한 체계적인 방법을 제안한다. 제안된 단기 수요 예측시스템은 1시간, 24시간, 168시간의 예측 리드 타임을 갖고 예측을 수행하기 위해서 요일 유형과 시간 별로 총 96개의 초기 구조를 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시점에 해당하는 초기 구조를 선택하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 예측시스템은 단지 2개의 입력 변수만을 이용하기 때문에 간단한 모델 구조를 가질 뿐 아니라 학습된 퍼지 규칙을 해석하는 것이 매우 용이하다는 장점을 갖는다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 한국전력의 실제 전력 수요 데이터를 이용하여 1시간, 24시간 168시간 앞의 전력 수요를 예측하는 모의 실험을 수행한다. 실험 결과 제안된 방법은 단지 2개의 입력 변수를 사용함에도 불구하고 기존의 예측 방법과 비교하여 예측의 정확도와 신뢰도 측면에서 우수한 성능을 얻는다.

  • PDF

Artificial Neural Networks for Forecasting of Short-term River Water Quality (단기 하천수질 예측을 위한 신경망모형)

  • Kim, Man-Sik;Han, Jae-Seok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.11-17
    • /
    • 2002
  • The purpose of this study is the prediction of pollutant loads into Seomjin river watershed using neural networks model. The pollutant loads into river watershed depend upon the water quantity of inflow from the upstream as well as the water quality of the inflow into the river. For the estimation of pollutants into river, a neural networks model which has the features of multi-layered structure and parallel multi-connections is used. The used water quality parameters are BOD, COD and SS into Seomjin river. The results of calibration are satisfactory, and proved the availability of a proposed neural networks model to estimate short-term water quality pollutants into river system.

  • PDF

Short-Term Load Forecasting of Transformer Using Artificial Neural Networks (신경회로망을 이용한 변압기의 단기부하예측)

  • Kim, Byoung-Su;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.20-25
    • /
    • 2005
  • In this paper, the short-term load forecasting of transformers is performed by artificial neural networks. Input parameters of the proposed algorithm are peak loads of pole-transformer of previous days and their maximum and minimum temperatures. The proposed algorithm is tested for one of transformers in Seoul, Korea. Test results show that the proposed algorithm improves the accuracy of the load forecasting of transformer compared with the conventional algorithm. The reposed algorithm can help to prevent some damages by over-loads of transformers.

Study on the Prediction of short-term Algal Bloom in Juksan weir Using the Model Tree (모델트리를 활용한 죽산보 단기조류예측에 관한 연구)

  • Lee, Bo-Mi;Yi, Hye-Suk;Chong, Sun-A;Joo, Yong-Eun;Kim, Ho-Joon;Choi, Kwang-Soon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.450-450
    • /
    • 2018
  • 최근 기후변화와 수온상승으로 인한 녹조발생이 빈번하게 나타나며, 녹조발생에 관한 관심은 꾸준히 증가하고 있는 추세이다. 본 연구는 효율적인 녹조관리를 위하여 모델트리를 활용하여 클로로필-a 단기조류예측 기법을 개발하였다. 대상지역으로 영산강수계의 죽산보를 선정하였으며, 2013년 1월부터 2016년 12월까지 나주 수질자동측정망의 일 단위자료와 동일기간 광주 기상청의 일별 기상자료를 이용하였다. 상관 분석을 통해 T-N, T-P, N/Pratio와 클로로필-a, 수온, 일사량, 강수량을 독립변수로, 단기(t+1일, t+3일, t+5일, t+7일) 클로로필-a를 종속변수로 선정하여 단기조류예측기법을 개발하였다. 수집한 자료의 데이터세트는 격일 간격으로 Training, Testing 기간으로 구분하여 적용한 결과, 상관계수는 1일 예측 시, Training 기간에 0.89, Testing 기간에 0.91, 3일 예측 시, Training 기간에 0.74, Testing 기간에 0.68, 5일 예측 시, Training 기간에 0.70, Testing 기간에 0.66, 7일 예측 시, Training 기간에 0.63, Testing 기간에 0.62로 나타났다. RMSE(Root Mean Square Error)는 1일 예측 시, Training 기간에 13.96, Testing 기간에 12.22, 3일 예측 시, Training 기간에 20.03, Testing 기간에 22.14, 5일 예측 시, Training 기간에 21.32, Testing 기간에 22.57, 7일 예측 시, Training 기간에 23.52, Testing 기간에 23.45로 나타났다. 예측주기에 따라 모델트리와 회귀식에서 활용한 독립변수는 1일 예측 시, 모델트리는 N/Pratio, 클로로필-a, 회귀식은 클로로필-a로 다르게 나타났다. 반면, 3일, 5일, 7일 예측 시, 모델트리와 회귀식에 활용된 변수는 같게 나타났다. 클로로필-a, 수온, 일사량은 5일 예측 시 활용된 변수로, 3일 예측 시에는 기상항목인 강수량이, 7일 예측 시에는 수질항목인 T-N, N/Pratio가 추가되었다. 특히 1일 예측 시 일 때, 높은 예측정도와 활용된 변수의 수가 적게 나타나는 것을 확인하였으며, 예측기간이 길어질수록 예측의 정확성이 낮아지고, 활용된 변수의 수가 많아지는 것을 확인하였다. 향후 적정한 예측기간을 판단하고 예측가능성을 높이기 위해서는 지속적인 자료취득 및 개선이 필요하며, 이를 바탕으로 적절한 단기조류예측이 가능할 것으로 판단된다.

  • PDF

Forecasting Container Throughput with Long Short Term Memory (LSTM을 활용한 컨테이너 물동량 예측)

  • Lim, Sangseop
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.617-618
    • /
    • 2020
  • 우리나라의 지리적인 여건상 대륙과 연결되지 않기 때문에 해상운송에 절대적으로 의존하고 있다. 해상운송에 있어 항만시설의 확보가 필요하며 대외무역의존도가 높은 우리나라의 경우 더욱 중요한 역할을 한다. 항만시설은 장기적인 항만수요예측을 통해 대규모 인프라투자를 결정하며 단기적인 예측은 항만운영의 효율성을 개선하고 항만의 경쟁력을 제고하는데 기여하므로 예측의 정확성을 높이기 위해 많은 노력이 필요하다. 본 논문에서는 딥러닝 모델 중에 하나인 LSTM(Long Short Term Memory)을 적용하여 우리나라 주요항만의 컨테이너 물동량 단기예측을 수행하여 선행연구들에서 주류를 이뤘던 ARIMA류의 시계열모델과 비교하여 예측성능을 평가할 것이다. 본 논문은 학문적으로 항만수요예측에 관한 새로운 예측모델을 제시하였다는 측면에서 의미가 있으며 실무적으로 항만수요예측에 대한 정확성을 개선하여 항만투자의사결정에 과학적인 근거로서 활용이 가능할 것으로 기대된다.

  • PDF

Development of Short-term Forecast Model using ERA5 reanalysis data based on Deep Learning model (ERA5 재해석 자료를 활용한 Deep Learning 모델 기반의 단기 예측 모형 개발)

  • Jin-Young Kim;Sumya Uranchimeg;Ji-Moon Yuk;Chan Ho Park;Boo Kyoung Park;Hee Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.289-289
    • /
    • 2023
  • 4차산업 혁명이 도래한 이후로 전세계적으로 AI 기술이 유래 없는 속도로 발달 및 활용되고 있으며, 다양한 분야에서 AI 기법을 도입한 연구가 활발히 진행 중에 있다. 최근 수자원 분야에서는 단기 강우 예측, 댐 유입량 예측 및 하천 수위 예측 등의 분야에서 AI 기술이 접목되어 꾸준한 기술 개발이 이루어지고 있다. 그러나 단변량으로 축척된 자료를 활용하여 중·장기 모형 개발 연구가 다수 진행되고 있지만, 급격한 기후변화 현상과 복잡한 매커니즘을 보이고 있는 기상현상의 경우 단변량 분석으로서는 정확도가 저하 될 수 있는 우려가 있는 것이 현실이다. 이에 본 연구에서는 상기에 제시된 단점을 극복하고자 다양한 기상자료를 검증·예측인자로 활용함과 동시에 Deeplearning 모형과 결합하여 신뢰성 있는 단기 강수 예측이 가능한 모형을 개발하였다. 본 연구에서는 유럽중기예보센터(ECMWF, European Center for Medium-Range Weather Forecasts)에서 제공하고 있는 ERA5 재해석 자료를 활용하였으며, Deeplearning 모형과 결합하여 단기 강우 예측이 가능한 모형을 개발하였다. 1차적으로 격자자료(25km×25km)로 제공되고 있는 ERA5 자료를 상세화(downscaling) 모형에 적용하여 기상청 관측소와 비교·검증하였으며, Deeplearning 모형을 통해 단기 예측이 가능한 모형으로 확장하였다. 이때 Deeplearning의 다양한 모형 중 시계열 분석에 있어 예측 성능이 높은 LSTM 모형을 활용하였으며, 제공되고 있는 대기 변수의 상호관계를 노드간 연결을 통해 결과의 정확도와 신뢰성을 확보하였다. 본 연구 결과는 기관별로 제공하고 있는 예측 수준을 상회하는 결과를 도출하였으며, 홍수기에 집중되는 강우량을 예측하여 대비·대책을 선제적으로 마련할 수 있는 자료로써의 활용성이 높을 것으로 사료된다.

  • PDF

Climate Information and GCMs Seasonal Forecasts Based Short-term Forecasts for Drought (기상자료 및 GCMs 예측결과를 활용한 단기 가뭄 예측)

  • Kwon, Hyun-Han;Moon, Jang-Won;Song, Hyun-Sup;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1186-1190
    • /
    • 2009
  • 강수량이 예년에 비해 적은 양상은 여름강수량에 대한 부족으로 기인한다. 우리나라의 경우 장마기간의 강수와 태풍으로 인해 발생하는 강수가 전체 강수량에 많은 부분을 차지하고 있기 때문에 여름강수량이 적게 나타나게 되면 가을 가뭄 및 봄 가뭄에 대한 발생 압력도 그 만큼 커지게 되는 것이 일반적이다. 기존 연구들이 단순히 강수량을 가정하거나 시나리오를 기반으로 가뭄을 전망하는데 그치고 있으나 본 연구에서는 2009년 가뭄전망을 위해서 전지구기후모형(GCMs)의 3개월 기상예측 결과를 활용하고자 한다. 즉, APEC 기후예측 센터로부터 제공 받은 3개월 GCM Multi-Model Ensemble 예측 결과를 바탕으로 가뭄상태를 평가하였다. 따라서 본 연구의 목적은 Large-scale의 기후예측 시스템과 기상관측지점의 강수 및 온도를 연결시켜 가뭄을 전망할 수 있는 시스템을 구축하는데 있다. GCM 예측 결과를 바탕으로 2009년도 매월 강수량 및 평균 온도를 추정하여 PDSI 가뭄지수 산정에 이용하였다.

  • PDF