• 제목/요약/키워드: 단계적 탐색

검색결과 1,103건 처리시간 0.024초

한국 금융회사 마케팅 현황에 대한 탐색 연구 (An Exploratory Study on Marketing of Financial Services Companies in Korea)

  • 천성용
    • Asia Marketing Journal
    • /
    • 제12권2호
    • /
    • pp.111-133
    • /
    • 2010
  • 투자상품의 확산, 고령화 등으로 인한 금융니즈 다양화와 자본시장법 시행으로 인한 금융회사간 치열한 경쟁으로 인해 금융산업 내에서 마케팅의 역할이 더욱 중요해지고 있다. 그러나, 지금까지 다른 산업에 비해 금융산업의 마케팅 연구는 상대적으로 부족하였다. 본 연구는 향후 구체적인 금융마케팅 연구들이 진행되기에 앞서 국내 금융마케팅 연구들을 정리하고, 국내 금융회사 마케팅 담당자를 In-depth 인터뷰하여 실제 국내 금융 마케팅 현황을 조사하였다. 이를 통해 향후 금융마케팅 연구에 필요한 시사점을 얻고자 하였다. 분석 결과, 다른 산업의 마케팅과 다른 금융 마케팅만의 고유 특징에 대한 이론적인 연구가 부족하였고, 금융산업 내에서 은행, 증권, 보험, 카드 산업 간의 마케팅 특징 차이에 대한 연구도 부족하였음을 알 수 있었다. 소비자행동 관점에서 금융고객의 의사결정 과정에 관한 연구도 부족하였다. 또한, 우리나라의 금융회사의 마케팅 현황은 외형적으로 어느 정도 성숙 단계에 접어들었다고 볼 수 있으나, 실제 업무는 여전히 과거의 영업지원, 혹은 프로모션 및 CRM 데이터 분석 등 단기적인 부분에 치중되어 있었다. 그리고, 은행, 증권, 보험, 카드 회사 등 각 세부 금융산업별 마케팅 담당자들이 중요하게 생각하는 금융마케팅의 키워드와 문제 인식 정도도 서로 다름을 알 수 있었다. 본 연구는 이러한 분석 결과를 바탕으로 향후 금융마케팅 연구를 위한 시사점과 함께 6가지의 연구명제를 제안하였다.

  • PDF

공공 정보지원 인프라 활용한 제조 중소기업의 특징과 성과에 관한 연구 (The Characteristics and Performances of Manufacturing SMEs that Utilize Public Information Support Infrastructure)

  • 김근환;권태훈;전승표
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.1-33
    • /
    • 2019
  • 제조 중소기업들은 지속적인 성장과 생존을 위해 새로운 제품 개발에 필요한 많은 정보가 필요할 뿐만 아니라 자원의 한계를 극복하기 위한 네트워킹(networking)을 추구하지만, 규모의 한계로 인해 한계점에 봉착하게 된다. 초연결성으로 인해 비즈니스 환경의 복잡성과 불확실성이 더욱 높아지는 새로운 시대에 중소기업은 신속한 정보 확보와 네트워킹 문제를 해결이 더욱 절실해지고 있다. 이러한 문제를 해결하기 위해 공공기관인 정부출연(연)구기관(이하 '출연(연)')은 중소기업의 정보 비대칭성 문제를 해결해야하는 중요한 임무와 역할을 맞이하고 있다. 본 연구에서는 비즈니스 인텔리젼스의 경쟁 지능화(competitive intelligence) 기능과 외부 네트워크 활성화를 위한 서비스 인프라(service infrastructure)의 기능을 포함한 공공 정보지원 인프라를 통한 간접지원의 성과를 확산하고자 하는 목적으로 출연(연)이 중소기업의 혁신역량 제고를 위해 제공하는 공공 정보지원 인프라를 활용하는 중소기업의 차별적 특징을 파악하고, 인프라가 기업의 성과에 어떻게 기여하는 가를 규명하고자 하였다. 이를 위해 첫째, 출연(연)이 제공한 정보지원 인프라를 활용하는 제조 중소기업은 다른 중소기업과 어떤 차별적인 특정이 있는가? 라는 연구 질의를 도출하였다. 추가적으로 단순히 선택적 편의 여부를 판단하는 것을 넘어서 출연(연) 정보지원 인프라를 활용한 제조 중소기업의 특징을 복수 집단의 특징과 비교하는 연구를 진행하였다. 둘째, 출연(연)이 제공하는 정보지원 인프라를 활용한 제조 중소기업의 외부 네트워킹 역량이 제품 경쟁력에 어떻게 기여했는가? 라는 연구 질의이다. 본 연구에서 공공 정보지원 인프라에 의해서 강화된 외부 네트워킹 역량이 어떻게 제품 경쟁력에 영향을 미쳤는지 정밀하게 분석하기 위해 복수의 변수에 대한 매개 및 조절 효과 분석을 수행하였다. 연구 모형을 도출하기하기 위해 첫째, 외부 네트워킹이 기술혁신성과에 영향력에 대한 평가를 수행하였다. 일반적으로 기업들은 외부 네트워킹(networking) 전략을 통해 혁신에 필요한 가치 있는 정보를 획득할 수 있기 때문에 기술혁신성과를 높일 수 있다. 정보 획득은 중소 제조기업 경영자의 혁신에 대한 인식을 강화할 뿐만아니라, 의사결정을 효율적으로 하여 경쟁력을 강화시킬 수 있게 된다. 대기업에 비해 인력과 자금의 규모 한계를 극복하기 위해 중소기업은 외부 조직과의 협력관계를 보다 적극적으로 추구한다. 둘째, 기술사업화 역량이 기술혁신성과에 미치는 관계에 대한 평가를 수행하였다. 기술사업화는 생산과 마케팅을 통합하여 새로운 기술을 만드는 역량을 말한다. 우수한 생산 역량을 보유한 기업은 소비자의 수요를 가격, 품질, 신기능 측면에서 신속하게 충족시킬 수 있어 시장내 경쟁우위를 창출하고, 그 결과로 높은 재무적 혁신적 성과를 가져온다고 본다. 혁신적인 기업은 생산 역량과 마케팅 역량에서 일반 기업보다 높은 성과를 나타내는데, 기술혁신성과의 대표 지표로 제품 경쟁력을 지목하고 있다. 마지막으로 기업의 규모가 작을수록 새로운 혁신 정보를 확보할 수 있는 자체 정보지원 인프라가 없는 경향이 있다. 중소기업용 정보인프라는 기업의 제품 또는 서비스 역량을 강화하기 위한 전략에 필요한 중요한 정보를 확보할 수 있어야 하며, 데이터에 대한 해석 기능이 있어야 하고, 기업의 성장과 발전을 위한 다양한 주제(대기업, 공급자, 소비자 등)와의 협력 전략을 수립을 도울 수 있는 기능이 요구된다. 종합하면, 연구모형은 외부 네트워킹 역량(독립변수)이 기술혁신성과인 제품 경쟁력(종속변수)에 영향을 주는 기본 모형에 기술사업화 역량을 매개요인으로 적용하였고, 이들의 관계에 기업의 내부역량(연구원 집중도, 매출액, 업력)이 영향을 줄 수 있기 때문에 기업의 내부역량과 관련된 변수들을 통제하였다. 또한 KISTI가 제공한 공공 정보지원 인프라 활용한 기업별 역량 차이를 분석하기 위해, 정보지원 인프라 활용(효율성)과 관련된 KISTI 외부 기술사업화 전문가(멘토링) 정보지원 횟수의 조절 변수로 고려하였다. 본 연구에서 활용한 데이터 원천은 2차 정보인 '제8차 중소기업 기술통계조사' 자료와 1차 정보인 KISTI의 직접 설문 자료다. '제8차 중소기업 기술통계조사' 는 중소기업청과 중소기업중앙회에서 공동으로 매년 실시되고 있으며, 설문 조사의 모집단은 종사자수 5인 이상 300인 미만인 제조업 및 제조업 외 기업 중에서 기술개발을 수행하고 있는 중소기업 43,204개사이다. 이 중에서 2014년 12월 31일 현재 기준으로 기술개발을 수행하고 있는 3,300개 중소기업을 표본추출하여 방문조사를 실시하여 수집한 자료이다. 본 연구에서 KISTI의 정보지원 인프라를 통해 지원받은 290개의 KISTI 패밀리 기업(ASTI)을 대상으로 2017년에 전자 메일을 통해 자료를 수집하였다. 송부된 290개의 설문지 중 222개의 기업에서 회신을 보내왔으며 그 중에서 설문 내용이 유효한 설문 조사는 149건으로 활용율은 51.3%였다. 분석 결과에 대한 살펴보면 다음과 같다. 규모면에서는 공공 정보지원 인프라 활용 제조 중소기업(ASTI 설문 집단)과 R&D 중소기업(KBIZ 설문 집단)의 성향은 통계적으로 유의미하게 차이가 있었지만, 보다 많은 변수를 종합적으로 보면 크게 다르지 않은 집단이라고 판단했다. 공공 정보지원 인프라를 활용하는 제조 중소기업은 이미 출연(연)과 협업이 가능한 집단을 대표하는 성향 보이는 것으로 나타났다. 외부 네트워킹 역량 강화가 제품 경쟁력 제고에 기여하는데 있어서 기술사업화 역량(마케팅 및 생산 역량)이 가지는 매개 효과의 가능성을 탐색하기 위해서 먼저 통제 변수는 고려하지 않고, Baron과 Kenny(1986)의 매개 효과 분석을 수행했다. 분석결과 외부 네트워크 역량 강화 효과가 제품 경쟁력을 강화시키는 것으로 보였지만, 실제는 기술사업화 역량의 제고를 통해 제품 경쟁력을 강화시키는 것으로 나타났다. 공공 정보지원 인프라 활용의 효과성을 판단하기 위한 멘토링 정보지원 횟수의 조절효과 분석을 위해 3단계의 위계적 회귀분석을 수행하였다. 분석 결과 외부 네트워킹 역량과 멘토링 정보지원 횟수의 상호작용항이 혁신성과(제품 경쟁력)에 유의한 영향을 미쳤을 뿐 아니라, 모델의 설명력도 증가하여, 멘토링 정보지원 횟수의 조절 효과가 검증되었다. 마지막으로 앞서 확인된 복수 매개효과와 조절효과가 동시에 나타날 수 있는 가능성을 판단하기 위해서 매개된 조절효과를 검토했다. 분석결과 외부 네트워킹 역량이 높아지면 제품 경쟁력 제고에 양의 영향을 주지만, 조절 변수인 멘토링 지원 횟수가 높아질수록 그 영향은 오히려 약화되었다. 그리고 외부 네트워킹 역량이 높아지면 사업화 역량(마케팅과 생산)이 높아져서 제품 경쟁력이 높아지며, 조절변수인 멘토링 지원 횟수가 높아지면 독립변수 외부 네트워킹 역량이 매개변수 생산 역량에 미치는 역량이 작아졌다. 종합하면, 외부 네트워킹 역량의 제고는 제품 경쟁력을 높이는데 기여하는데, 직접적 기여하지는 않지만 마케팅과 생산 역량을 높여 간접적으로 기여한다(완전 매개 효과). 또한 이 과정에서 멘토링의 정보적 지원 횟수는 외부 네트워킹 역량 제고가 생산 역량을 제고하는 매개효과에 영향을 준다(순수 조절 효과). 그러나 멘토링 정보 지원 횟수는 마케팅 역량 제고와 제품경쟁력에 별다른 조절 효과를 보이진 않는 것으로 나타났다. 연구를 통한 시사점은 다음과 같다. KISTI의 정보지원 인프라는 서비스 활용 마케팅이 이미 잘 진행되고 있다는 결론을 이끌 수도 있지만, 반면에 시장의 정보 불균형을 해소하는 공공적 기능보다는(열위 기업 지원) 성과가 잘 도출될 수 있는 집단을 지원해서(의도적 선택적 편의) 성과가 잘 나타나도록 관리하고 있다는 결론에 이를 수 있다. 연구 결과를 통해서 우리는 공공 정보지원 인프라가 어떻게 제품경쟁력 제고에 기여하는지 확인했는데, 여기서 우리는 다음과 같은 몇 가지 정책적 시사점을 도출할 수 있다. 첫째, 정보지원 인프라는 분석된 정보뿐만아니라 이 정보를 제공하는 기관(또는 전문가)과 지속적인 교류나 이런 기관을 찾는 역량을 높이는 기능이 있어야 한다. 둘째, 공공 정보지원 (온라인) 인프라의 활용이 효과적이라면 병행적인 오프라인 지원인 정보 멘토링이 지속적으로 제공될 필요는 없으며, 오히려 멘토링과 같은 오프라인 병행 지원은 성과 제고보다는 이상징후 감시에 적절한 장치로 활용되어야 한다. 셋째, 셋째, 공공 정보지원 인프라를 통한 네트워킹 역량 제고와 이를 통한 제품경쟁력 제고 효과는 특정 중소기업에서 나타나기 보다는 대부분 형태의 기업에서 나타나기 때문에, 중소기업이 활용 능력을 제고할 노력이 요구된다.

유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용 (Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating)

  • 안현철
    • 경영정보학연구
    • /
    • 제16권3호
    • /
    • pp.161-177
    • /
    • 2014
  • 기업신용등급은 금융시장의 신뢰를 구축하고 거래를 활성화하는데 있어 매우 중요한 요소로서, 오래 전부터 학계에서는 보다 정확한 기업신용등급 예측을 가능케 하는 다양한 모형들을 연구해 왔다. 구체적으로 다중판별분석(Multiple Discriminant Analysis, MDA)이나 다항 로지스틱 회귀분석(multinomial logistic regression analysis, MLOGIT)과 같은 통계기법을 비롯해, 인공신경망(Artificial Neural Networks, ANN), 사례기반추론(Case-based Reasoning, CBR), 그리고 다분류 문제해결을 위해 확장된 다분류 Support Vector Machines(Multiclass SVM)에 이르기까지 다양한 기법들이 학자들에 의해 적용되었는데, 최근의 연구결과들에 따르면 이 중에서도 다분류 SVM이 가장 우수한 예측성과를 보이고 있는 것으로 보고되고 있다. 본 연구에서는 이러한 다분류 SVM의 성능을 한 단계 더 개선하기 위한 대안으로 유전자 알고리즘(GA, Genetic Algorithm)을 활용한 최적화 모형을 제안한다. 구체적으로 본 연구의 제안모형은 유전자 알고리즘을 활용해 다분류 SVM에 적용되어야 할 최적의 커널 함수 파라미터값들과 최적의 입력변수 집합(feature subset)을 탐색하도록 설계되었다. 실제 데이터셋을 활용해 제안모형을 적용해 본 결과, MDA나 MLOGIT, CBR, ANN과 같은 기존 인공지능/데이터마이닝 기법들은 물론 지금까지 가장 우수한 예측성과를 보이는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안모형이 더 우수한 예측성과를 보임을 확인할 수 있었다.