• Title/Summary/Keyword: 다층 네트워크

Search Result 105, Processing Time 0.024 seconds

Fake SNS Account Identification Technique Using Statistical and Image Data (통계 및 이미지 데이터를 활용한 가짜 SNS 계정 식별 기술)

  • Yoo, Seungyeon;Shin, Yeongseo;Bang, Chaewoon;Chun, Chanjun
    • Smart Media Journal
    • /
    • v.11 no.1
    • /
    • pp.58-66
    • /
    • 2022
  • As Internet technology develops, SNS users are increasing. As SNS becomes popular, SNS-type crimes using the influence and anonymity of social networks are increasing day by day. In this paper, we propose a fake account classification method that applies machine learning and deep learning to statistical and image data for fake accounts classification. SNS account data used for training was collected by itself, and the collected data is based on statistical data and image data. In the case of statistical data, machine learning and multi-layer perceptron were employed to train. Furthermore in the case of image data, a convolutional neural network (CNN) was utilized. Accordingly, it was confirmed that the overall performance of account classification was significantly meaningful.

Recognition of the Center Position of Bolt Hole in the Stand of Insulator Using Multilayer Neural Network (다층 뉴럴네트워크를 이용한 애자 스탠드에서의 볼트 구멍의 중심위치 인식)

  • 안경관;표성만
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.304-309
    • /
    • 2003
  • Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. The maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system. In order to realize these tasks autonomously, the three dimensional position of target object such as electric line and the stand of insulator must be recognized accurately and rapidly. The approaching of an insulator and the wrenching of a nut task is selected as the typical task of the maintenance of active electric power distribution lines in this paper. Image recognition by multilayer neural network and optimal target position calculation method are newly proposed in order to recognize the center 3 dimensional position of the bolt hole in the stand of insulator. By the proposed image recognition method, it is proved that the center 3 dimensional position of the bolt hole can be recognized rapidly and accurately without regard to the pose of the stand of insulator. Finally the approaching and wrenching task is automatically realized using 6-link electro-hydraulic manipulators.

Modeling of Heliostat Sun Tracking Error Using Multilayered Neural Network Trained by the Extended Kalman Filter (확장칼만필터에 의하여 학습된 다층뉴럴네트워크를 이용한 헬리오스타트 태양추적오차의 모델링)

  • Lee, Sang-Eun;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.711-719
    • /
    • 2010
  • Heliostat, as a concentrator reflecting the incident solar energy to the receiver located at the tower, is the most important system in the tower-type solar thermal power plant, since it determines the efficiency and performance of solar thermal plower plant. Thus, a good sun tracking ability as well as its good optical property are required. In this paper, we propose a method to compensate the heliostat sun tracking error. We first model the sun tracking error, which could be measured using BCS (Beam Characterization System), by multilayered neural network. Then the extended Kalman filter was employed to train the neural network. Finally the model is used to compensate the sun tracking errors. Simulated result shows that the method proposed in this paper improve the heliostat sun tracking performance dramatically. It also shows that the training of neural network by the extended Kalman filter provides faster convergence property, more accurate estimation and higher measurement noise rejection ability compared with the other training methods like gradient descent method.

Neural Network-Based Modeling for Fuel Consumption Prediction of Vehicle (차량 연료 소모량 예측을 위한 신경회로망 기반 모델링)

  • Lee, Min-Goo;Jung, Kyung-Kwon;Yi, Sang-Hoi
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.19-25
    • /
    • 2011
  • This paper presented neural network modeling method using vehicle data to predict fuel consumption. To acquire data for training and testing the proposed neural network, medium-class gasoline vehicle drove at downtown and parameters measured include speed, engine rpm, throttle position sensor (TPS), and mass air flow (MAF) as input data, and fuel consumption as target data from OBD-II port. Multi layer perception network was used for nonlinear mapping between the input and the output data. It was observed that the neural network model can predict the vehicle quite well with mean squared error was $1.306{\times}10^{-6}$ for the fuel consumption.

Classification algorithm using characteristics of EBP and OVSSA (EBP와 OVSSA의 특성을 이용하는 분류 알고리즘)

  • Lee, Jong Chan
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.2
    • /
    • pp.13-18
    • /
    • 2018
  • This paper is based on a simple approach that the most efficient learning of a multi-layered network is the process of finding the optimal set of weight vectors. To overcome the disadvantages of general learning problems, the proposed model uses a combination of features of EBP and OVSSA. In other words, the proposed method can construct a single model by taking advantage of each algorithm so that it can escape to the probability theory of OVSSA in order to reinforce the property that EBP falls into local minimum value. In the proposed algorithm, methods for reducing errors in EBP are used as energy functions and the energy is minimized to OVSSA. A simple experimental result confirms that two algorithms with different properties can be combined.

A novel Node2Vec-based 2-D image representation method for effective learning of cancer genomic data (암 유전체 데이터를 효과적으로 학습하기 위한 Node2Vec 기반의 새로운 2 차원 이미지 표현기법)

  • Choi, Jonghwan;Park, Sanghyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.383-386
    • /
    • 2019
  • 4 차산업혁명의 발달은 전 세계가 건강한 삶에 관련된 스마트시티 및 맞춤형 치료에 큰 관심을 갖게 하였고, 특히 기계학습 기술은 암을 극복하기 위한 유전체 기반의 정밀 의학 연구에 널리 활용되고 있어 암환자의 예후 예측 및 예후에 따른 맞춤형 치료 전략 수립 등을 가능케하였다. 하지만 암 예후 예측 연구에 주로 사용되는 유전자 발현량 데이터는 약 17,000 개의 유전자를 갖는 반면에 샘플의 수가 200 여개 밖에 없는 문제를 안고 있어, 예후 예측을 위한 신경망 모델의 일반화를 어렵게 한다. 이러한 문제를 해결하기 위해 본 연구에서는 고차원의 유전자 발현량 데이터를 신경망 모델이 효과적으로 학습할 수 있도록 2D 이미지로 표현하는 기법을 제안한다. 길이 17,000 인 1 차원 유전자 벡터를 64×64 크기의 2 차원 이미지로 사상하여 입력크기를 압축하였다. 2 차원 평면 상의 유전자 좌표를 구하기 위해 유전자 네트워크 데이터와 Node2Vec 이 활용되었고, 이미지 기반의 암 예후 예측을 수행하기 위해 합성곱 신경망 모델을 사용하였다. 제안하는 기법을 정확하게 평가하기 위해 이중 교차 검증 및 무작위 탐색 기법으로 모델 선택 및 평가 작업을 수행하였고, 그 결과로 베이스라인 모델인 고차원의 유전자 벡터를 입력 받는 다층 퍼셉트론 모델보다 더 높은 예측 정확도를 보여주는 것을 확인하였다.

Development of Activity States Classifier Using Perceptron Algorithm (퍼셉트론 알고리즘을 이용한 활동상태 분류기법 개발)

  • So, Ji-Eun;Noh, Yun-Hong;Hwang, Gi-Hyun;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.360-364
    • /
    • 2009
  • 현대사회는 인구의 고령화에 따른 노인인구의 증가 및 만성질환자의 증가에 따른 의료수요 급증이 예상되고 있다. 하지만 현재의 의료서비스 인프라는 증가하는 의료수요를 충족하기에는 역부족이 따르며, 이러한 문제점을 해결하기위해 정보통신기술과 헬스케어기술이 결합된 유비쿼터스 헬스케어기술이 부각되고 있다. 본 연구에서는 일상생활 중 움직임에 따른 활동 상태를 판별하여 운동량의 모니터링을 통한 건강관리뿐만 아니라 낙상 등과 같은 응급상황의 모니터링이 가능한 시스템을 구현하고자 하였다. 이를 위하여 3축 가속도센서를 이용하여 인체의 움직임에 따른 활동 가속도 신호를 계측할 수 있는 센서 및 시스템을 구현하였다. 또한 계측된 센서신호를 PC또는 휴대용 단말기로 무선전송하기위하여 무선센서네트워크 기술을 적용한 데이터 전송시스템을 구현하였다. 계측된 가속도 신호로부터 활동 상태를 판별하기위해 다층 퍼셉트론 알고리즘을 적용한 분류알고리즘을 제안하였으며, 분류알고리즘의 성능평가를 통해 실제 활동상태 모니터링에 적용 가능함을 확인하였다.

  • PDF

Blockchain Property Registry and Smart Contract (블록체인 부동산 등기와 스마트계약)

  • Han, Zonghie
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.286-293
    • /
    • 2021
  • Smart contract based on the blockchain technology can be applied to the real estate registry including transactions. The Ethereum coin using multi layered protocol is widely accepted as the token for the smart contract. Block chain smart contract using SOLIDITY or PYTHON can mediate transactions auch as sale or lease, creating various scenarios in the property market. Those smart contract can construct the basis for the blockchain real estate registry, which is expected to overcome conventional transaction costs concerning the national law system, the asymmetric information and the currency exchange. The advantages of blockchain technology, namely security, decentralization, global transparency and openness can be applied to the smart contract system on the property registry. Several countries have advanced such blockchain real estate registry project recently, but no actual implementation has been reported for years, owing to institutional and technological impasses.

A Study on the Impacters of the Disabled Worker's Subjective Career Success in the Competitive Labour Market: Application of the Multi-Level Analysis of the Individual and Organizational Properties (경쟁고용 장애인근로자의 주관적 경력성공에 대한 영향요인 분석: 개인 및 조직특성에 대한 다층분석의 적용)

  • Kwon, Jae-yong;Lee, Dong-Young;Jeon, Byong-Ryol
    • 한국사회정책
    • /
    • v.24 no.1
    • /
    • pp.33-66
    • /
    • 2017
  • Based on the premise that the systematic career process of workers in the general labor market was one of core elements of successful achievements and their establishment both at the individual and organizational level, this study set out to conduct empirical analysis of factors influencing the subjective career success of disabled workers in competitive employment at the multi-dimensional levels of individuals and organizations(corporations) and thus provide practical implications for the career management directionality of their successful vocational life with data based on practical and statistical accuracy. For those purposes, the investigator administered a structured questionnaire to 126 disabled workers at 48 companies in Seoul, Gyeonggi, Chungcheong, and Gangwon and collected data about the individual and organizational characteristics. Then the influential factors were analyzed with the multilevel analysis technique by taking into consideration the organizational effects. The analysis results show that organizational characteristics explained 32.1% of total variance of subjective career success, which confirms practical implications for the importance of organizational variables and the legitimacy of applying the multilevel model. The significant influential factors include the degree of disability, desire for growth, self-initiating career attitude and value-oriented career attitude at the individual level and the provision of disability-related convenience, career support, personnel support, and interpersonal support at the organizational level. The latter turned out to have significant moderating effects on the influences of subjective career success on the characteristic variables at the individual level. Those findings call for plans to increase subjective career success through the activation of individual factors based on organizational effects. The study thus proposed and discussed integrated individual-corporate practice strategies including setting up a convenience support system by reflecting the disability characteristics, applying a worker support program, establishing a frontier career development support system, and providing assistance for a human network.

Looking for More Space-sensitive Korean Studies (한국학 연구에서 사회-공간론적 관점의 필요성에 대한 소고)

  • Park, Bae-Gyoon
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.1
    • /
    • pp.37-59
    • /
    • 2012
  • Korean studies are in crisis because they have fallen prey to the territorial trap associated with methodological territorialism and methodological nationalism. In order to overcome this situation, this paper suggests the studies on Korea to be more active in accepting the socio-spatial perspective that emphasize the inseparability of society and space. In particular, paying special attention to the 4 important dimensions of socio-spatial relations, such as place, territory, network and scale, it examines the ways in which these 4 dimensions are overlapped, interconnected and dynamically interacting with one another from the perspective of "multi-scalar networked territoriality". In conclusion, I argue that the Korean studies need to understand the variegated and multi-scalar nature of Korea, a place, which is constituted through complex interactions among diverse political, social, economic and cultural forces and processes that operate in various places and at diverse geographical scales.those days, such as agriculture, crops, and transportation of goods. Fifth, the bibliography and citations explaining all instances reveal that China (Qing) is a great civilization of the advanced world and that the scholarship of Joseon relied on and accepted it. Sixth, except for horse raising and management, farming implements for rice transplantation, sericulture, and natural dying of cloth, most of the topics are useful even today. In short, theres is a profound aspect to the content that makes it possible to estimate the "geographical thinking". In general, the focus of the content of this book directly linked to the practical agricultural economy of the common people.

  • PDF