Proceedings of the Korea Inteligent Information System Society Conference
/
2003.05a
/
pp.395-399
/
2003
본 논문에서는 인문 사회과학 분야의 방대한 설문 데이터를 처리하기 위해 기존의 설문 항목들간의 평면적 관계에만 국한 되었던 연구에 대해 설문데이터 다차원 연관규칙 마이닝 시스템을 설계하고 데이터 간의 연관규칙을 탐사한다. 즉, 직관적으로 분류될 수 있는 기준에 따라 클러스터링을 실행하여 데이터를 분류한 후 각 클러스터로부터 다차원 연관 규칙을 탐사하는 시스템을 제안함으로써 보다 강력한 연관규칙을 탐사한다.
Kim, Dae-In;Park, Joon;Kim, Hong-Ki;Hwang, Bu-Hyun
The KIPS Transactions:PartD
/
v.13D
no.6
s.109
/
pp.765-774
/
2006
An association rule discovery, a technique to analyze the stored data in databases to discover potential information, has been a popular topic in stream data system. Most of the previous researches are concerned to single stream data. However, this approach may ignore in mining to multidimensional stream data. In this paper, we study the techniques discovering the association rules to multidimensional stream data. And we propose a AR-MS method reflecting the characteristics of stream data since make the summarization information by one data scan and discovering the association rules for significant rare data that appear infrequently in the database but are highly associated with specific event. Also, AR-MS method can discover the maximal frequent item of multidimensional stream data by using the summarization information. Through analysis and experiments, we show that AR-MS method is superior to other previous methods.
Proceedings of the Korea Information Processing Society Conference
/
2001.10a
/
pp.233-236
/
2001
멀티미디어 데이터의 증가와 마이닝 기술의 발전으로 인해 멀티미디어 마이닝에 대한 관심이 증가하고 있다. 본 논문에서는 특성국지화를 이용한 내용기반의 정보검색 기술과 다차원 데이터큐브 구축기술을 통해 멀티미디어 데이터에서 연관규칙을 찾아내는 멀티미디어 데이터마이닝 시스템 프로토타입을 제안한다. 특히 멀티미디어 데이터의 칼라, 질감 등 거시적인 이미지 성분 대신 이미지의 영역성과 유사성을 이용한 특성국지화방법을 이용하여 이미지를 분할함으로써 방대한 데이타에서 효과적인 내용기반의 정의 검색을 시행하고 검색한 벡터를 메타데이타로 한 데이스베이스를 구축한다. 그리고 데이터베이스에서 데이터간 연관규칙을 찾아내어 지식을 마이닝하는데 효과적인 다차원 데이터큐브를 구축하고 여기에 연관규칙 검색 알고리즘을 적용한다.
Kim, Young-Hee;Lee, Chang-Yeol;Kang, En-Young;Kim, Ung-Mo
Proceedings of the Korean Information Science Society Conference
/
2006.10c
/
pp.145-148
/
2006
RFID 데이터에 대한 연관 규칙을 효율적으로 생성하기 위해서는 단일 개념 레벨에서 연관 규칙을 찾는 방법과는 달리 다단계 개념 레벨에서 의미 있는 정보를 발견할 수 있다. 이로부터 연관 규칙을 생성하게 되면 최상위 레벨의 정보를 통해 하위 레벨의 객체 이동 정보나 위치 정보, 상태 정보를 빠르게 획득 가능하다. 또한, 다차원 레벨을 갖는 연관 규칙 마이닝을 수행할 때 메타 규칙의 생성은 제한적이고 유용한 규칙만을 효율적으로 생성 가능하도록 할 수 있다. 따라서, 생성된 메타 규칙을 이용하여 많은 양의 데이터에서 질의를 효과적으로 수행 할 수 있을 뿐만 아니라, 데이터베이스의 저장 효율을 높이고, 객체간의 숨겨진 연관 관계를 발견하는데 있어 효율적인 방법이다.
To discover association rules from nontransactional data, there have been many studies on discretization of attribute values. These studies do not reflect the change of discovered rules' confidence according to the change of the ranges of the discretized attributes, and perform the discretization stage and the rule discovery stage independently. This causes the ranges of attributes not properly discretized, thereby making the rules having high confidence excluded in the result set. To solve this problem, we propose a novel method that performs the discretization and rule discovery stages simultaneously in order to discretize ranges of attributes in such a way that the rules having high confidence are discovered well. To the end, we perform hierarchical clustering on the attributes in the right hand side of rules, then do characterization on every cluster thus obtained. The experimental result demonstrates that our method discovers the rules having high confidence better than existing methods.
Kim, Jae-In;Kim, Dae-In;Song, Myung-Jin;Han, Dae-Young;Hwang, Bu-Hyun
The Journal of the Korea Contents Association
/
v.10
no.2
/
pp.99-110
/
2010
An event means a flow which has a time attribute such as a symptom of patient. Stream data collected by sensors can be summarized as an interval event which has a time interval between the start-time point and the end-time point in multiple stream data environment. Most of temporal mining techniques have considered only the frequent events. However, these approaches may ignore the infrequent event even if it is important. In this paper, we propose a new temporal data mining that can find association rules for the significant temporal relation based on interval events in multidimensional stream data environment. Our method considers the weight of events and stream data on the sensing time point of abnormal events. And we can discover association rules on the significant temporal relation regardless of the occurrence frequency of events. The experimental analysis has shown that our method provide more useful knowledge than other conventional methods.
Proceedings of the Korean Information Science Society Conference
/
2004.10a
/
pp.214-216
/
2004
순차패턴 마이닝은 데이터들 속에서 어떤 순차 관계가 들어 있는 패턴을 찾는 것이다. 순차 패턴은 다양한 분야에서 중요하게 쓰인다. 예를 들어, 소비자가 구입한 물품들 간의 순차적인 관계성은 다음에 구입할 물건을 예측하는데 쓰일 수 있다. 또한 방문 웹 페이지의 순차 패턴은 사용자가 방문하고자 하는 다음 페이지를 예측하는데 중요할 수 있다. 본 논문에서는 다차원 순차패턴을 마이닝하는 새로운 효율적인 알고리즘의 구현에 대해 설명한다 다차원 순차 패턴 마이닝은 속성-값(attribute-value) 기술을 포함하는 순차 패턴의 연관 규칙을 찾는 것이다. 다음의 두 가지의 현존하는 효율적 알고리즘을 융합하였다. 순차패턴 마이닝을 위한 PrefixSpan 알고리즘과 비 순차패턴 마이닝을 위한 StarCubing 알고리즘. 새로운 알고리즘은 다차원 데이터를 마이닝 하는 StarCubing알고리즘의 효율성을 이용하므로 다차원 순차 데이터를 마이닝 하는데 효율적일 것이다. 실험결과는 제안한 알고리즘이 특히 작은 최소지지도와 작은 cardinality에서 Seq-Dim과 Dim-Seq 같은 현존하는 알고리즘보다 나은 성능임을 보여준다.
Journal of the Korean Data and Information Science Society
/
v.22
no.6
/
pp.1113-1121
/
2011
Recently, a variety of data mining techniques has been applied in various fields like healthcare, insurance, and internet shopping mall. Association rule mining is a popular and well researched method for discovering interesting relations among large set of data items. Association rule mining is the method to quantify the relationship between each set of items in very huge database based on the association thresholds. There are three primary quality measures for association rules; support and confidence and lift. In this paper we consider some similarity measures with negative co-occurrence frequencies which is widely used in cluster analysis or multi-dimensional analysis as association thresholds. The comparative studies with support, confidence and some similarity measures are shown by numerical example.
Proceedings of the Korean Information Science Society Conference
/
2002.10c
/
pp.223-225
/
2002
Decision tree는 목표 데이터에 대한 계층적 관점을 보여준다는 의미에서 데이터를 보다 잘 이해하는데 많은 도움이 되나 탐욕법(greedy algorithm)에 의한 트리 생성법의 한계로 인해 최적의 예측자라고는 할 수가 없다. 이와 같은 약점을 보완하기 위하여 일반적 방법으로 생성한 decision tree에 대하여 다차원 연관규칙 알고리즘을 적용함으로써 짱은 길이의 최적 부분 규칙집합을 구하는 방법을 제시하였고 실험을 통해 그와 같은 사실을 확인하였다.
Journal of the Korean Data and Information Science Society
/
v.22
no.3
/
pp.495-503
/
2011
The most widely used data mining technique is to find association rules. Association rule mining is the method to quantify the relationship between each set of items in very huge database based on the association thresholds. There are some basic association thresholds to explore meaningful association rules ; support, confidence, lift, etc. Among them, confidence is the most frequently used, but it has the drawback that it can not determine the direction of the association. The net confidence and the attributably pure confidence were developed to compensate for this drawback, but they have other drawbacks.In this paper we consider some predictive similarity measures for binary data in cluster analysis and multi-dimensional analysis as association threshold to compensate for these drawbacks. The comparative studies with net confidence, attributably pure confidence, and some predictive similarity measures are shown by numerical example.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.