• Title/Summary/Keyword: 다차원데이타

Search Result 89, Processing Time 0.02 seconds

Dynamic Relocation of Virtual Machines for Load Balancing in Virtualization Environment (가상화 환경에서 부하균형을 위한 가상머신 동적 재배치)

  • Sa, Seong-Il;Ha, Chang-Su;Park, Chan-Ik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.12
    • /
    • pp.568-575
    • /
    • 2008
  • Server consolidation by sever virtualization can make one physical machine(PM) to run several virtual machines simultaneously. Although It is attractive in cost, it has complex workload behaviors. For that reason, efficient resource management method is required. Dynamic relocation of virtual machine(VM)[3,4] by live migration[1,2] is one of resource management methods. We proposed SCOA(Server Consolidation Optimizing Algorithm) : a fine-grained load balancing mechanism worked on this dynamic relocation mechanism. We could obtain accurate resource distribution information through pointed physical machines on multi dimensional resource usage coordination, so we could maintain more balanced resource state. In this paper, we show the effectiveness of our algorithm by comparison of experimental results between SCOA and sandpiper[3] by software simulation.

Fast Marker-based Registration of 3D CT and 2D X-ray Fluoroscopy Images (3차원 전산화 단층촬영영상과 2차원 X-선 투시영상간 표식기 기반 고속 정합)

  • Kim Gye-Hyun;Park Seong-Jin;Hong He-Len;Shin Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.3
    • /
    • pp.335-343
    • /
    • 2006
  • This paper proposes a novel technique of marker-based 2D-3D registration to combine 3D information obtained from preoperative CT images into 2D image obtained from intraoperative x-ray fluoroscopy image. Our method is divided into preoperative and intraoperative procedures. In preoperative procedure, we generate CT-derived DRRs using graphics hardware and detect markers automatically. In intraoperative procedure, we propose a hierarchical two- step registration to reduce a degree of freedom from 6-DOP to 2-DOF which is composed of in-plane registration using principal axis method and out-plane registration using minimal error searching method in spherical coordinate. For experimentation, we use cardiac phantom datasets with confirmation markers and evaluate our method in the aspects of visual inspection, accuracy and processing time. As experimental results, our method keeps accuracy and aligns very fast by reducing real-time computations.

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.

인터넷을 이용한 육상물류중개시스템 개발에 관한 연구

  • 박남규;최형림;송근곤;박영재;손형수
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.335-345
    • /
    • 1999
  • 오늘날 날로 증가하는 물류비는 개별 기업은 물론 국가 전체의 수출 경쟁력을 약화시키는 주요 원인으로 지적되고 있다. 그러나 그동안 우리나라에서는 물류비 절감을 위한 종합적이고 체계적인 대책이 이루어지지 못하였다. 특히 본 논문의 연구대상인 육상물류의 경우 그 비중이 전체 화물 운송의 60% 이상을 차지함에도 불구하고 심각한 교통체증 및 물류기반 시설의 미비, 효율적인 정보시스템의 미비 등으로 인하여 물류비가 계속 증가하는 양상을 보여 왔다. 따라서 본 논문에서는 우리나라 육상물류시스템이 안고 있는 문제점의 해결을 위한 방안들 중의 하나로 정보기술의 활용에 관한 내용을 다루고 있다. 즉 영세한 기업들도 누구나 손쉽게 이용할 수 있도록 인터넷을 이용한 육상물류중개시스템의 개발에 관한 내용을 소개하고 있다. 육상물류중개시스템은 복합화물주선업체인 (주) 대형물류와 함께 개발한 시스템으로 인터넷을 통하여 화주의 화물 운송의뢰를 접수받아 이를 여러 운송업체에게 제공해주는 역할을 수행하게 된다. 특히 육상물류중개시스템은 화물의 운송과 관련하여 발생하는 다양한 정보들을 데이터베이스에 저장하여 두었다가 세관을 비롯한 터미날에 대한 각종 신고업무에 이용할 수 있으며, 이밖에도 교통정보 및 화물 위치정보 등 다양한 서비스를 제공해줄 수 있다. 따라서 운송업체의 공차율을 줄이고 화주에게는 자신의 화물에 대한 정보를 실시간으로 전달해 줄 수 있다는 장점이 있다. 또한 이러한 육상물류중개시스템은 현재 개발중인 통합데이터베이스를 기반으로 한 항만물류원스톱서비스 시스템과 연계되어 차후에는 물류원스톱시스템으로 발전할 수 있을 것이다. 연구가 진행되고 있는 인공신경망과의 모형결합을 통해 기존연구와는 다른 새로운 통합예측방법론을 제시하고자 한다. 본 연구에서 제시하는 통합방법론은 크게 2단계 과정을 거쳐 예측모형으로 완성이 된다. 즉, 1차 모형단계에서 원시 재무시계열은 먼저 웨이블릿분석을 통해서 노이즈가 필터링 되는 동시에, 과거 재무시계열의 프랙탈 구조, 즉 비선형적인 움직임을 보다 잘 반영시켜 주는 다차원 주기요소를 가지는 시계열로 분해, 생성되며, 이렇게 주기에 따라 장단기로 분할된 시계열들은 2차 모형단계에서 신경망의 새로운 입력변수로서 사용되어 최종적인 인공 신경망모델을 구축하는 데 반영된다.ocioeconomic impacts are resulted from the program. It would be useful for the means of (ⅰ) fulfillment of public accountability to legitimate the program and to reveal the expenditure of pubic fund, and (ⅱ) managemental and strategical learning to give information necessary to improve the making. program and policy decision making, The objectives of the study are to develop the methodology of modeling the socioeconomic evaluation, and build up the practical socioeconomic ev

  • PDF

An Efficient Bitmap Indexing Method for Multimedia Data Reflecting the Characteristics of MPEG-7 Visual Descriptors (MPEG-7 시각 정보 기술자의 특성을 반영한 효율적인 멀티미디어 데이타 비트맵 인덱싱 방법)

  • Jeong Jinguk;Nang Jongho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.1
    • /
    • pp.9-20
    • /
    • 2005
  • Recently, the MPEG-7 standard a multimedia content description standard is wide]y used for content based image/video retrieval systems. However, since the descriptors standardized in MPEG-7 are usually multidimensional and the problem called 'Curse of dimensionality', previously proposed indexing methods(for example, multidimensional indexing methods, dimensionality reduction methods, filtering methods, and so on) could not be used to effectively index the multimedia database represented in MPEG-7. This paper proposes an efficient multimedia data indexing mechanism reflecting the characteristics of MPEG-7 visual descriptors. In the proposed indexing mechanism, the descriptor is transformed into a histogram of some attributes. By representing the value of each bin as a binary number, the histogram itself that is a visual descriptor for the object in multimedia database could be represented as a bit string. Bit strings for all objects in multimedia database are collected to form an index file, bitmap index, in the proposed indexing mechanism. By XORing them with the descriptors for query object, the candidate solutions for similarity search could be computed easily and they are checked again with query object to precisely compute the similarity with exact metric such as Ll-norm. These indexing and searching mechanisms are efficient because the filtering process is performed by simple bit-operation and it reduces the search space dramatically. Upon experimental results with more than 100,000 real images, the proposed indexing and searching mechanisms are about IS times faster than the sequential searching with more than 90% accuracy.

A Bottom up Filtering Tuple Selection Method for Continuous Skyline Query Processing in Sensor Networks (센서 네트워크에서 연속 스카이라인 질의 처리를 위한 상향식 필터링 투플 선정 방법)

  • Sun, Jin-Ho;Chung, Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.280-291
    • /
    • 2009
  • Skyline Query processing is important to wireless sensor applications in order to process multi-dimensional data efficiently. Most skyline researches about sensor network focus on minimizing the energy consumption due to the battery powered constraints. In order to reduce energy consumption, Filtering Method is proposed. Most existing researches have assumed a snapshot skyline query processing and do not consider continuous queries and use data generated in ancestor node. In this paper, we propose an energy efficient method called Bottom up filtering tuple selection for continuous skyline query processing. Past skyline data generated in child nodes are stored in each sensor node and is used when choosing filtering tuple. We also extend the algorithms, called Support filtering tuple(SFT) that is used when we choose the additional filtering tuple. There is a temporal correlation between previous sensing data and recent sensing data. Thus, Based on past data, we estimate current data. By considering this point, we reduce the unnecessary communication cost. The experimental results show that our method outperforms the existing methods in terms of both data reduction rate(DRR) and total communication cost.

Indexing and Retrieval Mechanism using Variation Patterns of Theme Melodies in Content-based Music Information Retrievals (내용 기반 음악 정보 검색에서 주제 선율의 변화 패턴을 이용한 색인 및 검색 기법)

  • 구경이;신창환;김유성
    • Journal of KIISE:Databases
    • /
    • v.30 no.5
    • /
    • pp.507-520
    • /
    • 2003
  • In this paper, an automatic construction method of theme melody index for large music database and an associative content-based music retrieval mechanism in which the constructed theme melody index is mainly used to improve the users' response time are proposed. First, the system automatically extracted the theme melody from a music file by the graphical clustering algorithm based on the similarities between motifs of the music. To place an extracted theme melody into the metric space of M-tree, we chose the average length variation and the average pitch variation of the theme melody as the major features. Moreover, we added the pitch signature and length signature which summarize the pitch variation pattern and the length variation pattern of a theme melody, respectively, to increase the precision of retrieval results. We also proposed the associative content-based music retrieval mechanism in which the k-nearest neighborhood searching and the range searching algorithms of M-tree are used to select the similar melodies to user's query melody from the theme melody index. To improve the users' satisfaction, the proposed retrieval mechanism includes ranking and user's relevance feedback functions. Also, we implemented the proposed mechanisms as the essential components of content-based music retrieval systems to verify the usefulness.

An Efficient Clustering Algorithm based on Heuristic Evolution (휴리스틱 진화에 기반한 효율적 클러스터링 알고리즘)

  • Ryu, Joung-Woo;Kang, Myung-Ku;Kim, Myung-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.1_2
    • /
    • pp.80-90
    • /
    • 2002
  • Clustering is a useful technique for grouping data points such that points within a single group/cluster have similar characteristics. Many clustering algorithms have been developed and used in engineering applications including pattern recognition and image processing etc. Recently, it has drawn increasing attention as one of important techniques in data mining. However, clustering algorithms such as K-means and Fuzzy C-means suffer from difficulties. Those are the needs to determine the number of clusters apriori and the clustering results depending on the initial set of clusters which fails to gain desirable results. In this paper, we propose a new clustering algorithm, which solves mentioned problems. In our method we use evolutionary algorithm to solve the local optima problem that clustering converges to an undesirable state starting with an inappropriate set of clusters. We also adopt a new measure that represents how well data are clustered. The measure is determined in terms of both intra-cluster dispersion and inter-cluster separability. Using the measure, in our method the number of clusters is automatically determined as the result of optimization process. And also, we combine heuristic that is problem-specific knowledge with a evolutionary algorithm to speed evolutionary algorithm search. We have experimented our algorithm with several sets of multi-dimensional data and it has been shown that one algorithm outperforms the existing algorithms.

PBFiltering: An Energy Efficient Skyline Query Processing Method using Priority-based Bottom-up Filtering in Wireless Sensor Networks (PBFiltering: 무선 센서 네트워크에서 우선순위 기반 상향식 필터링을 이용한 에너지 효율적인 스카이라인 질의 처리 기법)

  • Seong, Dong-Ook;Park, Jun-Ho;Kim, Hak-Sin;Park, Hyoung-Soon;Roh, Kyu-Jong;Yeo, Myung-Ho;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.36 no.6
    • /
    • pp.476-485
    • /
    • 2009
  • In sensor networks, many methods have been proposed to process in-network aggregation effectively. Unlike general aggregation queries, skyline query processing compares multi-dimensional data for the result. Therefore, it is very difficult to process the skyline queries in sensor networks. It is important to filter unnecessary data for energy-efficient skyline query processing. Existing approach like MFTAC restricts unnecessary data transitions by deploying filters to whole sensors. However, network lifetime is reduced by energy consumption for many false positive data and filters transmission. In this paper, we propose a bottom up filtering-based skyline query processing algorithm of in-network for reducing energy consumption by filters transmission and a PBFiltering technique for improving performance of filtering. The proposed algorithm creates the skyline filter table (SFT) in the data gathering process which sends from sensor nodes to the base station and filters out unnecessary transmissions using it. The experimental results show that our algorithm reduces false positives and improves the network lifetime over the existing method.