• Title/Summary/Keyword: 다차원데이타

Search Result 89, Processing Time 0.025 seconds

Hippocratic XML Databases: A Model and Access Control Mechanism (히포크라테스 XML 데이터베이스: 모델 및 액세스 통제 방법)

  • Lee Jae-Gil;Han Wook-Shin;Whang Kyu-Young
    • Journal of KIISE:Databases
    • /
    • v.31 no.6
    • /
    • pp.684-698
    • /
    • 2004
  • The Hippocratic database model recently proposed by Agrawal et al. incorporates privacy protection capabilities into relational databases. Since the Hippocratic database is based on the relational database, it needs extensions to be adapted for XML databases. In this paper, we propose the Hippocratic XML database model, an extension of the Hippocratic database model for XML databases and present an efficient access control mechanism under this model. In contrast to relational data, XML data have tree-like hierarchies. Thus, in order to manage these hierarchies of XML data, we extend and formally define such concepts presented in the Hippocratic database model as privacy preferences, privacy policies, privacy authorizations, and usage purposes of data records. Next, we present a new mechanism, which we call the authorization index, that is used in the access control mechanism. This authorization index, which is Implemented using a multi-dimensional index, allows us to efficiently search authorizations implied by the authorization granted on the nearest ancestor using the nearest neighbor search technique. Using synthetic and real data, we have performed extensive experiments comparing query processing time with those of existing access control mechanisms. The results show that the proposed access control mechanism improves the wall clock time by up to 13.6 times over the top-down access control strategy and by up to 20.3 times over the bottom-up access control strategy The major contributions of our paper are 1) extending the Hippocratic database model into the Hippocratic XML database model and 2) proposing an efficient across control mechanism that uses the authorization index and nearest neighbor search technique under this model.

A One-Pass Aggregation Algorithm using the Disjoint-Inclusive Partition Multidimensional Files in Multidimensional OLAP (다차원 온라인 분석처리에서 분리-포함 분할 다차원 파일 구조를 사용한 원-패스 집계 알고리즘)

  • Lee, Yeong-Gu;Mun, Yang-Se;Hwang, Gyu-Yeong
    • Journal of KIISE:Databases
    • /
    • v.28 no.2
    • /
    • pp.153-167
    • /
    • 2001
  • 다차원 온라인 분석처리(Multidimensional On-Line Analytical Processing: MOLAP)에서 집계 연산은 중요한 기본 연산이다. 기존의 MOLAP 집계 연산은 다차원 배열 구조를 기반으로 한 파일 구조에 대해서 연구되어 왔다. 이러한 파일 구조는 편중된 분포를 갖는 데이터에서는 잘 동작하지 못한다는 단점이 있다. 본 논문에서는 편중된 분포에도 잘 동작하는 다차원 파일구조를 사용한 집계 알고리즘을 제안한다. 먼저, 새로운 분리-포함 분할이라는 개념을 사용한 집계 연산 처리 모델을 제안한다. 집계 연산 처리에서 분리-포함 분할 개념을 사용하면 페이지들의 액세스 순서를 미리 알아 낼 수 있다는 특징을 가진다. 그리고, 제안한 모델에 기반하여 원-패스 버퍼 크기(one-pass buffer size)를 사용하여 집계 연산을 처리하는 원-패스 집계 알고리즘을 제안한다. 원-패스 버퍼 크기란 페이지 당 한 번의 디스크 액세스를 보장하기 위해 필요한 최소 버퍼 크기이다. 또한, 제안한 집계 연산 처리 모델 하에서 제안된 알고리즘이 최소의 원-패스 버퍼 크기를 갖는다는 것을 증명한다. 마지막으로, 많은 실험을 통하여 이론적으로 구한 원-패스 버퍼 크기가 실제 환경에서 정확히 동작함을 실험적으로 확인하였다. 리 알고리즘은 미리 알려진 페이지 액세스 순서를 이용하는 버퍼 교체 정책을 사용함으로써 최적의 원-패스 버퍼 크기를 달성한다. 제안하는 알고리즘을 여 러 집계 질의가 동시에 요청되는 다사용자 환경에서 특히 유용하다. 이는 이 알고리즘이 정규화 된 디스크 액세스 횟수를 1.0으로 유지하기 위해 반드시 필요한 크기의 버퍼만을 사용하기 때문이다.

  • PDF

An Efficient Mining Algorithm for Generating Probabilistic Multidimensional Sequential Patterns (확률적 다차원 연속패턴의 생성을 위한 효율적인 마이닝 알고리즘)

  • Lee Chang-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.2
    • /
    • pp.75-84
    • /
    • 2005
  • Sequential pattern mining is an important data mining problem with broad applications. While the current methods are generating sequential patterns within a single attribute, the proposed method is able to detect them among different attributes. By incorporating these additional attributes, the sequential patterns found are richer and more informative to the user This paper proposes a new method for generating multi-dimensional sequential patterns with the use of Hellinger entropy measure. Unlike the Previously used methods, the proposed method can calculate the significance of each sequential pattern. Two theorems are proposed to reduce the computational complexity of the proposed system. The proposed method is tested on some synthesized purchase transaction databases.

다차원 스펙트럼해석의 기초와 응용

  • 오재응
    • Journal of the KSME
    • /
    • v.24 no.6
    • /
    • pp.446-451
    • /
    • 1984
  • 최근 기계구조물로부터 발생되는 소음. 진동의 수준을 평가하고 그 대책을 수립하는데 스펙트 럼분석(spectral analysis)과 상관기술(correlation technique)의 이용도가 점증하고 있다. 전자계 산기에 의한 데이터처리기술의 진보에 따라 불규칙한 입력을 받는 기계구조물의 고유진동수추정 및 진동모우드해석, 많은 소음. 진동원을 갖는 플랜트. 선박. 차량기기등의 발생원검출 및 기여 량파악, 그리고 acoustic emission 및 bispectrum에 의한 기기이상진단기술에 적용함으로써 공 학분야에서 한층 중요한 위치를 점하고 있다. 따라서 본 강좌에서는 먼저 상관해석에 의한 스 펙트럼의 정의에 대해서 기술하고 샘플링이론에 만족하는 시간간격으로 샘플링함으로써 얻어지는 시계열데이타를 Fourier 변환하여 주파수영역에서 계의 특성을 해석하는 원리 및 기여함수에 대해 설명하고자 한다. 그리고 입력원간에 상관이 존재하는 경우에 있어서 소음. 진동원을 검 출하고 기여량을 추정할 수 있는 방법으로서의 다차원스펙트럼해석법에 대해 간단하게 기술하 고자 한다.

  • PDF

Performance Evaluation of Front-End OLAP Cube Generation Algorithms on Relational DBMS (관계 DBMS 상에서 전위 방식의 OLAP 큐브 생성 알고리즘의 성능 평가)

  • Jo, Sun-Hwa;Kim, Jin-Ho;Moon, Yang-Sae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.163-165
    • /
    • 2005
  • ROLAP 시스템에서는 다차원 OLAP 큐브를 관계 데이터베이스 내에 여러 집계 테이블을 사용하여 저장하며, 관계 DBMS 기능을 그대로 이용하므로 구현이 간단하다. 이들 집계 테이블들은 대용량의 소스 데이타(즉, 사실 테이블)를 정렬한 후 이에 대한 집계 값을 계산하므로 큐브를 생성하는데 많은 시간이 소요된다. 이러한 다차원 큐브를 효율적으로 생성할 수 있는 여러 가지 방법이 제안되었다. 이들 방법들은 큐브 생성 시간이 사실 테이블을 정렬하는데 주로 소요되므로 이 횟수를 줄이는 기법을 주로 제안하였다. 그러나 이러한 큐브 생성 알고리즘의 성능은 실제 DBMS 상에서 평가되지 않았다. 이 연구에서는 기존의 큐브 생성 알고리즘들을 관계 DBMS 상에서 그 성능을 비교 평가하였다.

  • PDF

Operations And Assignments Of Multidimensional Nested Indexs For Object Databases (객체 데이타베이스를 위한 다차원 중포 색인구조의 운용과 할당)

  • 이정아;임윤주;이종학
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.624-627
    • /
    • 2004
  • 지난 몇 년간 체세대 데이터베이스 시스템으로서 객체 데이터베이스 시스템의 객체 질의연구가 이루어지고 있으며, 특히 고급 질의의 처리비용을 줄이기 위한 연구가 활발하다. 최근에 제안된 중포 속성 색인기법은 객체지향 질의 처리의 성능 향상에 크게 기여하고 있다. 하지만 이들 색인구조들은 기존의 관계형 데이터베이스에서 사용된 단순 속성에 대한 색인구조에 비해 저장 공간과 갱신 유지비용이 크다. 또한 클래스 상속에 의한 객체 데이터 모델의 특징을 반영하지 못하며 타켓 클래스 및 도메인 클래스 대치가 있는 경로식으로 표현된 질의는 지원하지 못한다. 따라서 본 논문에서는 객체 데이터베이스의 주요 특징을 반영할 수 있는 색인구조인 다차원 중포 색인구조와 경로 색인구조에 대한 운용법을 제시한다. 또한 효과적인 질의 처리를 하기 위한 효율적인 색인할당방법을 제시한다. 이로써 객체지향 데이터베이스 시스템에서의 고급 질의의 처리비용을 줄일 수 있다.

  • PDF

Declustering of High-dimensional Data by Cyclic Sliced Partitioning (주기적 편중 분할에 의한 다차원 데이터 디클러스터링)

  • Kim Hak-Cheol;Kim Tae-Wan;Li Ki-Joune
    • Journal of KIISE:Databases
    • /
    • v.31 no.6
    • /
    • pp.596-608
    • /
    • 2004
  • A lot of work has been done to reduce disk access time in I/O intensive systems, which store and handle massive amount of data, by distributing data across multiple disks and accessing them in parallel. Most of the previous work has focused on an efficient mapping from a grid cell to a disk number on the assumption that data space is regular grid-like partitioned. Although we can achieve good performance for low-dimensional data by grid-like partitioning, its performance becomes degenerate as grows the dimension of data even with a good disk allocation scheme. This comes from the fact that they partition entire data space equally regardless of distribution ratio of data objects. Most of the data in high-dimensional space exist around the surface of space. For that reason, we propose a new declustering algorithm based on the partitioning scheme which partition data space from the surface. With an unbalanced partitioning scheme, several experimental results show that we can remarkably reduce the number of data blocks touched by a query as grows the dimension of data and a query size. In this paper, we propose disk allocation schemes based on the layout of the resultant data blocks after partitioning. To show the performance of the proposed algorithm, we have performed several experiments with different dimensional data and for a wide range of number of disks. Our proposed disk allocation method gives a performance within 10 additive disk accesses compared with strictly optimal allocation scheme. We compared our algorithm with Kronecker sequence based declustering algorithm, which is reported to be the best among the grid partition and mapping function based declustering algorithms. We can improve declustering performance up to 14 times as grows dimension of data.

An Efficient Technique for Processing Frequent Updates in the R-tree (R-트리에서 빈번한 변경 질의 처리를 위한 효율적인 기법)

  • 권동섭;이상준;이석호
    • Journal of KIISE:Databases
    • /
    • v.31 no.3
    • /
    • pp.261-273
    • /
    • 2004
  • Advances in information and communication technologies have been creating new classes of applications in the area of databases. For example, in moving object databases, which track positions of a lot of objects, or stream databases, which process data streams from a lot of sensors, data Processed in such database systems are usually changed very rapidly and continuously. However, traditional database systems have a problem in processing these rapidly and continuously changing data because they suppose that a data item stored in the database remains constant until It is explicitly modified. The problem becomes more serious in the R-tree, which is a typical index structure for multidimensional data, because modifying data in the R-tree can generate cascading node splits or merges. To process frequent updates more efficiently, we propose a novel update technique for the R-tree, which we call the leaf-update technique. If a new value of a data item lies within the leaf MBR that the data item belongs, the leaf-update technique changes the leaf node only, not whole of the tree. Using this leaf-update manner and the leaf-access hash table for direct access to leaf nodes, the proposed technique can reduce update cost greatly. In addition, the leaf-update technique can be adopted in diverse variants of the R-tree and various applications that use the R-tree since it is based on the R-tree and it guarantees the correctness of the R-tree. In this paper, we prove the effectiveness of the leaf-update techniques theoretically and present experimental results that show that our technique outperforms traditional one.

다양한 분포의 데이터를 이용한 시계열 패턴 인덱스의 성능 비교

  • 김영인
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1998.10a
    • /
    • pp.791-805
    • /
    • 1998
  • 음성데이타베이스 이미지 데이터베이스 등과 같은 응용에서 다차원 구조의 시계열 패턴을 효율적으로 처리하기 위한 인덱스 구조가 필요하다. 이러한 인덱스구조로 시계열 패턴 인덱스(9)가 제안되었다. 본 논문에서는 시계열 패턴 인덱스가 실제 응용에 적용가능한가를 판단하기 위하여 , 다양한 분포의 대량 데이터를 이용한 실험을 통한 성능을 비교한다. 성능 실험결과 저장시의 성능은 균일 분포에서 좋은 성능을 나타냈다. 질의 처리시의 성능은 모든 분포에서 좋은 후보 선택의 결과를 나타냈다.

Evaluation Of Improved Usage Profiles Using Frequency Support Threshold In Clusters (클러스터 내부 빈발 지지도를 이용한 개선된 사용 프로파일 평가)

  • 안계순;이필규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.277-279
    • /
    • 2002
  • 웹 로그 기반의 웹 사용 마이닝은 명시적 평가 의존, 확장성 결여, 그리고 다차원 및 희박한 데이터에 성능이 떨어지는 협력적 여과의 문제를 다소 해결할 수 있다. 그러나 k-Means 군집화 방법으로 생성된 군집속 유사 사용자 이동 패턴으로는 클러스터속 사용자 전체의 선호도를 표현할 수 없으므로 사용자 이동 패턴인 트랜잭션들로부터 사용 프로파일을 유도해야 한다. 본 논문에서는 유사 군집 사용자들의 관심과 기호를 표현할 수 있도록 클러스터 내부 데이타로부터 평균 가중치 및 빈발 지지도 임계값을 사용하여 개선된 사용 프로파일을 생성하고 실험 데이터를 통한 예측력과 추천에 대한 성능을 평가한다.

  • PDF