• 제목/요약/키워드: 다중 특징

검색결과 1,192건 처리시간 0.032초

자동 얼굴인식을 위한 얼굴 지역 영역 기반 다중 심층 합성곱 신경망 시스템 (Facial Local Region Based Deep Convolutional Neural Networks for Automated Face Recognition)

  • 김경태;최재영
    • 한국융합학회논문지
    • /
    • 제9권4호
    • /
    • pp.47-55
    • /
    • 2018
  • 본 논문에서는 얼굴인식 성능 향상을 위해 얼굴 지역 영역 영상들로 학습된 다중개의 심층 합성곱 신경망(Deep Convolutional Neural Network)으로부터 추출된 심층 지역 특징들(Deep local features)을 가중치를 부여하여 결합하는 방법을 제안한다. 제안 방법에서는 지역 영역 집합으로 학습된 다중개의 심층 합성곱 신경망으로부터 추출된 심층 지역 특징들과 해당 지역 영역의 중요도를 나타내는 가중치들을 결합한 특징표현인 '가중치 결합 심층 지역 특징'을 형성한다. 일반화 얼굴인식 성능을 극대화하기 위해, 검증 데이터 집합(validation set)을 사용하여 지역 영역에 해당하는 가중치들을 계산하고 가중치 집합(weight set)을 형성한다. 가중치 결합 심층 지역 특징은 조인트 베이시안(Joint Bayesian) 유사도 학습방법과 최근접 이웃 분류기(Nearest Neighbor classifier)에 적용되어 테스트 얼굴영상의 신원(identity)을 분류하는데 활용된다. 제안 방법은 얼굴영상의 자세, 표정, 조명 변화에 강인하고 기존 최신 방법들과 비교하여 얼굴인식 성능을 향상시킬 수 있음이 체계적인 실험을 통해 검증되었다.

특징 융합을 이용한 농작물 다중 분광 이미지의 의미론적 분할 (Semantic Segmentation of Agricultural Crop Multispectral Image Using Feature Fusion)

  • 문준렬;박성준;백중환
    • 한국항행학회논문지
    • /
    • 제28권2호
    • /
    • pp.238-245
    • /
    • 2024
  • 본 논문에서는 농작물 다중 분광 이미지에 대해 특징 융합 기법을 이용하여 의미론적 분할 성능을 향상시키기 위한 프레임워크를 제안한다. 스마트팜 분야에서 연구 중인 딥러닝 기술 중 의미론적 분할 모델 대부분은 RGB(red-green-blue)로 학습을 진행하고 있고 성능을 높이기 위해 모델의 깊이와 복잡성을 증가시키는 데에 집중하고 있다. 본 연구는 기존 방식과 달리 다중 분광과 어텐션 메커니즘을 통해 모델을 최적화하여 설계한다. 제안하는 방식은 RGB 단일 이미지와 함께 UAV (unmanned aerial vehicle)에서 수집된 여러 채널의 특징을 융합하여 특징 추출 성능을 높이고 상호보완적인 특징을 인식하여 학습 효과를 증대시킨다. 특징 융합에 집중할 수 있도록 모델 구조를 개선하고, 작물 이미지에 유리한 채널 및 조합을 실험하여 다른 모델과의 성능을 비교한다. 실험 결과 RGB와 NDVI (normalized difference vegetation index)가 융합된 모델이 다른 채널과의 조합보다 성능이 우수함을 보였다.

다중 특징을 이용한 동작정보 측정 (Estimating Motion Information Using Multiple Features)

  • 장석우
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권2호
    • /
    • pp.1-10
    • /
    • 2005
  • 본 논문에서는 연속적인 레인지(range) 영상 자료로부터 동작 벡터를 추출하는 새로운 블록 정합 알고리즘을 제안한다. 본 논문에서 제안된 알고리즘은 단일 특징을 사용하지 않고 다중 특징인 명암값, 색상, 레인지 특징의 세 가지 특징을 통합한 정합 유사 함수를 정의하며, 엔트로피를 이용하여 각 특징의 기여도를 구한 후 이를 가중치의 형태로 정합 유사 함수에 적용한다. 그리고 제안된 알고리즘은 고정된 블록 템플릿을 사용하지 않고 가변적인 크기의 블록 템플릿을 사용한다. 제안한 블록 정합에서는 먼저 작은 정합 템플릿으로 블록 정합을 시작한다. 만일 정합 정도가 좋지 않으면 정합 템플릿의 크기를 조금 확장한 후 본 논문에서 정의한 정합기준이 만족하거나 사전에 정의된 최대 블록 크기에 도달할 때까지 블록정합을 반복한다. 실험에서는 본 논문에서 제안한 블록 정합 알고리즘과 기존의 다른 알고리즘의 성능을 비교 분석하여 제안한 알고리즘의 우수함을 보인다.

  • PDF

다중 기술자를 이용한 잘못된 특징점 정합 제거 (Filtering Feature Mismatches using Multiple Descriptors)

  • 김재영;전희성
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권1호
    • /
    • pp.23-30
    • /
    • 2014
  • 이미지 기술자(descriptor)를 이용한 정합은 최근까지 컴퓨터 비전과 패턴인식 분야에서 사용되고 있는 강력한 정합 방법이다. 그러나 3차원 시점이 변화되거나 밝기가 변화된 이미지, 반복된 패턴이 포함된 이미지 등에서 잘못된 정합들이 발생한다. 본 논문에서는 반복된 패턴이 포함되어 있는 이미지에서 잘못된 정합들이 많이 발생하는 문제점에 대해 기술하고 이를 분석하여 잘못된 정합들을 제거할 수 있는 방법을 제안한다. MDMF(Multiple Descriptors-based Mismatch Filtering) 방법은 각 특징점에 대해 인접한 여러 개의 특징점들의 기술자들을 사용하여 다중 기술자를 생성한 후 이를 활용하여 잘못된 정합들을 제거한다. 실험에서는 크기 변환, 회전 변환, 어파인 변환에 대해 기존 SIFT와 ASIFT의 정합율을 MDMF를 이용해 제거한 정합율과 비교하여 MDMF가 잘못된 정합을 성공적으로 제거할 수 있음을 보였다.

단일특징 분할 회귀트리의 학습성능 개선을 위한 회귀신경망 (Regression Neural Networks for Improving the Learning Performance of Single Feature Split Regression Trees)

  • 임숙;김성천
    • 전자공학회논문지B
    • /
    • 제33B권1호
    • /
    • pp.187-194
    • /
    • 1996
  • 본 논문은 회귀트리에 기반을 둔 회귀 신경망을 제안한다. 회귀트리를 세 개의 계층을 갖는 전향 신경망에 사상하고, 첫 번째 계층에 다중특징 분할함수를 형성시켜 신경망이 보다 더 최적인 입력 공간의 분할을 갖도록 한다. 본 연구에서는 신경망 트레이닝을 위한 두 가지 지도 학습 알고리즘을 제안하여 단일특징 분할함수와 다중특징 분할함수에 실험한다. 실험결과, 제안된 회귀 신경망은 기존의 단일특징 분할 회귀트리 및 단일특징 분할 회귀신경망보다 학습능력이 우수함을 입증한다. 또한 본 논문에서 제안한 알고리즘이 학습 능력을 저하시키지 않으면서도 효과적으로 과성장한 회귀트리를 가지치기 할 수 있음을 보인다.

  • PDF

다중 필터와 복합형 신경망을 이용한 얼굴 검출 기법 (Face Detection Using Multiple Filters and Hybrid Neural Networks)

  • 조일국;박현정;김호준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2005년도 학술대회
    • /
    • pp.191-194
    • /
    • 2005
  • 본 논문에서는 방송 영상에서 조명효과와 크기변화 등에 강인한 얼굴패턴 검출기법을 제시한다. 제안된 얼굴검출 모델은 영상 전처리 과정과 얼굴패턴 검출 과정으로 이루어진다. 전처리 과정은 조명변화에 대한 보정기능과 다중필터에 의한 후보영역 선별기능으로 구분된다. 얼굴패턴 검출과정은 다단계의 특징지도 생성과정과 패턴분류 과정으로 이루어진다. 특징지도를 생성하기 위하여 가보(Gabor) 필터계층을 포함하는 CNN(Convolutional Neural Networks)모델을 도입하였다. 다양한 배경을 고려한 효과적인 학습을 위하여 본 논문에서는 억제성의 뉴런(Inhibitory neuron)을 포함하는 구조의 CNN모델을 적용한다. CNN으로부터 추출되는 특징집합은 최종 단계에서 WFMM(Weighted Fuzzy Min Max) 모델을 사용하여 분류된다. 이때 사용되는 특징집합의 크기는 분류기의 규모 및 계산량의 결정적인 역할을 준다. 이에 본 연구에서는 최종 분류 과정에 사용되는 특징의 수를 효과적으로 줄이기 위해 FMM모델을 사용하는 적응적인 특징 선별 기법을 제안한다. 또한 실제 영상을 통한 실험결과로부터 제안된 이론의 타당성을 고찰한다.

  • PDF

내용기반 복합 영상 검색 시스템을 위한 적응적 특징 자가선택과 다중 SOFM 신경망 (Adaptive Feature Selef-selection and Multiple SOFM Neural network for Content-based image Retrieval System)

  • 임승린
    • 한국컴퓨터정보학회논문지
    • /
    • 제5권2호
    • /
    • pp.22-29
    • /
    • 2000
  • 본 논문은 복합 영상을 위한 내용기반 영상 검색의 효율을 극대화하기 위한 방법을 제안하였다. 영상 검색을 효율적으로 수행하기 위해서는 영상 검색의 후보를 축소와 함께 최적의 특징을 선택하는 것이 필요하다 한가지 영상 특징 패턴에 기반 한 검색 시스템으로는 다양한 종류의 복합 영상에 대한 검색과정에서 영상 도메인이 변화할 경우 검색 효과를 극대화할 수가 없다. 본 논문에서는 검색 영상 도메인이 변하면 질의 영상 특성에 따라 최적의 특징 패턴을 시스템 스스로 선택하는 적응적 자가 특징 선택 기법 통하여 복합 영상의 검색 효율을 극대화하였다. 제안된 방안에서는 검색 효율을 개별적인 특징들에 비해 3% 향상시킬 수 있었으며 다중 SOFM신경망을 통하여 검색 후보를 축소하였다

  • PDF

다중 클래스 데이터를 위한 분류오차 최소화기반 특징추출 기법 (Optimizing Feature Extractioin for Multiclass problems Based on Classification Error)

  • 최의선;이철희
    • 대한전자공학회논문지SP
    • /
    • 제37권2호
    • /
    • pp.39-49
    • /
    • 2000
  • 본 논문에서는 다중 클래스 데이터를 위한 특징 추출 방법을 최적화하는 기법을 제안한다 제안된 특징 추출 기법은 분류 오차에 기반한 방법으로 특징 공간(feature space)을 탐색하여 가우시안 최대우도 분류기 (Gaussian ML Classifier)의 분류오차(classification error)가 최소가 되도록 하는 특징벡터 집합을 구하는 방법이다 제안된 방법은 임의의 초기 특징벡터를 설정한 후 steepest descent 알고리즘을 적용하여 분류오차가 감소하는 방향으로 초기벡터를 갱신시킨다 본 논문에서는 순차탐색 및 전체탐색 두 가지의 방법을 제안하며 순차탐색은 추가로 특징벡터를 구하는 경우 이미 구해진 특징벡터를 포함하여 최소의 분류오차를 얻을 수 있는 특징벡터를 구한다 반면에 전체탐색 방법은 추가의 특징벡터를 구할 경우 새로운 초기 특징벡터 집합을 설정하여 이미 구해진 특징벡터를 포함하는 제약을 받지 않는다. 실험결과 제안된 두 가지 방법은 기존의 특징추출 방법보다 우수한 성능을 보여주고 있다.

  • PDF

시변 잡음에 대처하기 위한 다중 모델을 이용한 PCMM 기반 특징 보상 기법 (PCMM-Based Feature Compensation Method Using Multiple Model to Cope with Time-Varying Noise)

  • 김우일;고한석
    • 한국음향학회지
    • /
    • 제23권6호
    • /
    • pp.473-480
    • /
    • 2004
  • 본 논문에서는 잡음 환경에서 강인한 음성 인식을 위하여 음성 모델을 기반으로 하는 효과적인 특징 보상 기법을 제안한다. 제안하는 특징 보상 기법은 병렬 결합된 혼합 모델 (PCMM)을 기반으로 한다. 기존의 PCMM 기반의 기법은 시간에 따라 변하는 잡음 환경을 반영하기 위하여 매 음성 입력마다 복잡한 과정의 혼합 모델 결합이 필요하다. 제안하는 기법에서는 다중의 혼합 모델을 보간하는 방법을 채용함으로써 시간에 따라 변하는 배경 잡음에 대응할 수 있다. 보다 신뢰성 있는 혼합 모델 생성을 위하여 데이터 유도 기반의 방법을 도입하고, 실시간 처리를 위하여 프레임에 동기화된 환경 사후 확률 예측 과정을 제안한다. 다중 모델로 인한 연산량 증가를 막기 위하여 혼합 모델을 공유하는 기법을 제안한다. 가우시안 혼합 모델 사이에 통계학적으로 유사한 요소들을 선택하여 공유에 필요한 공통 모델을 생성한다. Aurora 2.0 데이터베이스와 실제 자동차 주행 환경에서 수집된 음성 데이터베이스에 대한 성능 평가를 실시한다. 실험 결과로부터 제안한 기법이 모의 환경과 실제 잡음 환경에서 강인한 음성 인식 성능을 가져오고 연산량 감소에 효과적임을 확인한다.

정보 검색용 다중 스레드 한국어 형태소 해석기 (A Korean Morphological Analyzer Supports Multi-Threads)

  • 최유경;안동언;정성종
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.41-47
    • /
    • 2001
  • 본 논문에서는 한국어 형태소 해석기에 다중 스레드 기법을 도입하여 다중 처리가 가능하도륵 하였다. 기존의 여러 형태소 해석기들은 언어 분석에만 관심이 있었기 때문에 다량의 문서를 동시에 처리하는 기능을 고려하지 않았다. 그러나 형태소 해석기가 정보 검색 시스템 분야에서 사용되기 시작하면서, 다수의 사용자가 대량의 문서를 처리해야 하는 필요성이 생겼다. 스레드 간에는 메모리 영역과 같은 자원을 공유한다. 이러한 특징 때문에 자칫하면 예상치 못한 결과가 야기될 수 있다. 따라서, 다중 스레드 기법을 사용하기 위해서는 스레드의 특징을 고려한 조치가 필요하다 기존의 한국어 형태소 해석기의 소스 코드를 분석하여 자주 사용되는 전역 변수는 하나의 구조체로 구성하였다. 그리고 이러한 전역 변수와 크기가 큰 지역 변수를 사용할 때 메모리를 동적으로 할당하였다. 또한, 파일에서 입력값을 읽어오거나 파일에 결과값을 쓰는 등 여러 스레드가 접근할 때 값이 변경될 위험이 있는 부분은 조건 변수를 이용하여 동기화 시켰다. 구현된 시스템의 검증을 위하여, 단일 스레드 방식으로 순차적인 처리를 하는 원래의 형태소 해석기와 비교 실험을 실시하였다. 35Kbyte 문서 30개를 처리하는 경우, 다중 처리가 가능한 형태소 해석기가 단일 스레드 방식의 형태소 해석기보다 처리속도가 약 12% 향상되었다.

  • PDF