• Title/Summary/Keyword: 다중 생체 정보

Search Result 113, Processing Time 0.031 seconds

Multi User-Authentication System using One Time-Pseudo Random Number and Personal DNA STR Information in RFID Smart Card (RFID 스마트카드내 DNA STR Information과 일회용 의사난수를 사용한 다중 사용자 인증시스템)

  • Sung, Soon-Hwa;Kong, Eun-Bae
    • The KIPS Transactions:PartC
    • /
    • v.10C no.6
    • /
    • pp.747-754
    • /
    • 2003
  • Thia paper suggests a milti user-authentication system comprises that DNA biometric informatiom, owner's RFID(Radio Frequency Identification) smartcard of hardware token, and PKI digital signqture of software. This system improved items proposed in [1] as follows : this mechanism provides one RFID smartcard instead of two user-authentication smartcard(the biometric registered seal card and the DNA personal ID card), and solbers user information exposure as RFID of low proce when the card is lost. In addition, this can be perfect multi user-autentication system to enable identification even in cases such as identical twins, the DNA collected from the blood of patient who has undergone a medical procedure involving blood replacement and the DNA of the blood donor, mutation in the DNA base of cancer cells and other cells. Therefore, the proposed system is applied to terminal log-on with RFID smart card that stores accurate digital DNA biometric information instead of present biometric user-authentication system with the card is lost, which doesn't expose any personal DNA information. The security of PKI digital signature private key can be improved because secure pseudo random number generator can generate infinite one-time pseudo randon number corresponding to a user ID to keep private key of PKI digital signature securely whenever authenticated users access a system. Un addition, this user-authentication system can be used in credit card, resident card, passport, etc. acceletating the use of biometric RFID smart' card. The security of proposed system is shown by statistical anaysis.

Design and Implementation of Multi-HILS based Robot Testbed to Support Software Validation of Biomimetic Robots (생체모방로봇 소프트웨어 검증 지원 다중 HILS 기반 로봇 테스트베드 설계 및 구현)

  • Hanjin Kim;Kwanhyeok Kim;Beomsu Ha;Joo Young Kim;Sung Jun Shim;Jee Hoon Koo;Won-Tae Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.6
    • /
    • pp.243-250
    • /
    • 2024
  • Biomimetic robots, which emulate characteristics of biological entities such as birds or insects, have the potential to offer a tactical advantage in surveillance and reconnaissance in future battlefields. To effectively utilize these robots, it is essential to develop technologies that emulate the wing flapping of birds or the movements of cockroaches. However, this effort is complicated by the challenges associated with securing the necessary hardware and the complexities involved in software development and validation processes. In this paper, we presents the design and implementation of a multi-HILS based biomimic robot software validation testbed using modeling and simulation (M&S). By employing this testbed, developers can overcome the absence of hardware, simulate future battlefield scenarios, and conduct software development and testing. However, the multi-HILS based testbed may experience inter-device communication delays as the number of test robots increases, significantly affecting the reliability of simulation results. To address this issue, we propose the data distribution service priority (DDSP), a priority-based middleware. DDSP demonstrates an average delay reduction of 1.95 ms compared to the existing DDS, ensuring the required data transmission quality for the testbed.

Analysis of Bioimpedance Change and the Characteristics of Blood Pressure according to Posture (자세에 따른 생체임피던스 변화와 혈압 특성 분석)

  • Cho, Young Chang;Kim, Min Soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.5
    • /
    • pp.25-31
    • /
    • 2014
  • Bioelectrical Impedance Analysis(BIA) is a widely used method for estimating body composition changes which is a non-invasive, inexpensive, safety and reproductive method. We studied the bioimpedance change and the distinction of blood pressure according to body posture and conducted three kinds of experiments: the real-time bioimpedance measurement, the simulation using equivalent circuit model and the blood pressure measurement. Bioimpedance is measured during 4 minutes at the multi-frequency(1 kHz, 10 kHz, 20 kHz, 50 kHz, 70 kHz, 100 kHz). From the experiment results, the changes in body postures result in changes of resistance and reactance, with an average rapid increase of body impedance when going from standing, sitting to supine. Specially, the laying resistance on average was 16.49% higher than supine resistance at 50 kHz and the laying reactance measurement was also 26.05% higher than sitting reactance at 1 kHz. Blood pressure in standing posture was higher than those in other postures both in maximum($125.14{\pm}12.30$) and in minimum($75.57{\pm}10.31$). The results of BIA and blood pressure in this study will be contributed to the research on acute illness, extreme fat, and body shape abnormalities.

Implementation of Sensing Devices for Ubiquitous Health Care System (유비쿼터스 헬스케어 시스템을 위한 센싱 단말기 구현)

  • 백승재;이철희;정동현;최용석;김준영;최종무
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.124-126
    • /
    • 2004
  • 본 논문에서는 유비쿼터스 헬스케어 시스템을 위한 센싱 단말기 구현 내용을 설명한다. 본 연구에서 설계한 유비쿼터스 헬스케어 시스템은 센싱 단말기, 처리 단말기, DB 서버, 전문가 서버로 구성된다. 센싱 단말기는 사용자의 생체 신호를 검출하고 처리한 후 그 결과를 무선 통신을 통해 처리 단말기로 전달한다. 본 연구에서 구현한 센싱 단말기는 8MHz로 동작하는 AVR MicroController 처리기와 맥박 센서, 그리고 Bluetooth 무선 통신 모듈로 구성되어 있다. 또한 5개의 포트별로 8개의 입력 라인이 있어 다중 센싱 (Multi-Modal Sensing)이 가능하며, Bluetooth를 지원하는 다양한 처리 단말기와 연동이 가능하다는 특징을 갖는다. 실험결과 사용자의 생체 신호를 제대로 검출하여 무선 통신으로 전달함을 알 수 있었다.

  • PDF

Laundry test method of electric conductivity smart wearable devices for public transport drivers (대중교통 운전자용 전기전도성 스마트 의류의 내세탁성 성능 시험 방법)

  • Park, Jin-O;Park, Chan;Choi, Jae-seok;Park, Ok-Yun
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.123-124
    • /
    • 2017
  • 최근에 장시간 근무로 인한 대중교통 운전자들의 부족한 휴식과 수면, 통증, 정신적 스트레스 등은 피로 누적를 초래하여 대중교통 사고의 주요 원인으로 대두되고 있다. 이에 2016년 산업통상자원부 산업융합촉진사업의 일환으로 대중교통 운전자용 다중 생체 신호측정 스마트 의류 및 관련 시스템이 개발중에 있으며 본 논문에는 현재 개발중인 스마트웨어러블 의류의 내세탁성능에 대한 성능 시험방법을 제안하고자 한다. 성능시험 방법은 국내외 생체신호측정 스마트 의류의 care label(취급표시사항)을 통하여 hand wash의 조건으로 세탁을 표시하고 있으나, 1년의 warranty를 위한 시험을 위해서는 오랜기간이 필요하기 때문에, 좀더 가혹한 조건으로 진행하여 시간을 줄이고, 고객의 빠른 시장출시를 지원하도록 시험방법을 제안하였다.

  • PDF

Biometric Information and OTP based on Authentication Mechanism using Blockchain (블록체인을 이용한 생체정보와 OTP 기반의 안전한 인증 기법)

  • Mun, Hyung-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.3
    • /
    • pp.85-90
    • /
    • 2018
  • Blockchain technology provides distributed trust structure; with this, we can implement a system that cannot be forged and make Smart Contract possible. With blockchain technology emerging as next generation security technology, there have been studies on authentication and security services that ensure integrity. Although Internet-based services have been going with user authentication with password, the information can be stolen through a client and a network and the server is exposed to hacking. For the reason, we suggest blockchain technology and OTP based authentication mechanism to ensure integrity. In particular, the Two-Factor Authentication is able to ensure secure authentication by combining OTP authentication and biometric authentication without using password. As the suggested authentication applies multiple hash functions and generates transactions to be placed in blocks in order for biometric information not to be identified, it is protected from server attacks by being separate from the server.

Development of Textile Fabrics Flexible Platform based Multiple Bio-Signal Central Monitoring System for Emergency Situational Awareness in High-Risk Working Environments (고위험 작업환경에서 응급상황 인지를 위한 직물형 플렉시블 플랫폼 기반의 다중 생체신호 중앙 모니터링 시스템 개발)

  • Jeon, Ki-Man;Ko, Kwang-Cheol;Lee, Hyun-Min;Kim, Young-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.227-237
    • /
    • 2014
  • The purpose of this paper is to implement a multiple bio-signal central monitoring system based on textile fabrics flexible platform which can obtain and monitor bio signals(heart rate, body temperature, electrocardiography, electromyogram) of workers in special working environments and additional situational information (3-axis acceleration, temperature, humidity, illumination, surrounding image). This system can prevent various accidents that may occur in the remote work environment and provide fast and efficient response by detecting workers' situations in real-time. For it, the textile fabrics flexible platform was made as innerwear or outerwear so that it does not interfere with workers' performance while collecting bio-signal and situational information, and obtained information is sent to the central monitoring system through wireless communication. The central monitoring system is based on wireless medical telemetry service of WMTS (Wireless Medical Telemetry Service); can monitor from 2 to 32 people simultaneously; and was designed so that it can be expanded. Also, in this study, to verify performance of the WMTS communication model, packet transmission rates were compared according to the distance.

Estimating plot-level volume using LiDAR-extracted height distributional parameters (항공 LiDAR의 높이분포변수를 이용한 임분재적추정에 관한 연구)

  • Kwak, Doo-Ahn;Lee, Woo-Kyun;Cho, Hyun-Kook
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.09a
    • /
    • pp.134-141
    • /
    • 2010
  • 임분 단위의 재적 및 생체량은 LiDAR 자료의 높이 분포변수들로부터 추정될 수 있다. LiDAR 자료의 높이 분포변수들은 재적을 측정하는 임분고(stand height)와 임분평균 지하고(mean crown base height), 그리고 수관형태에 따른 평균수관장(mean crown depth) 등의 변수와 직 간접적인 연관성이 있다. 그러므로, 본 연구에서는 잣나무림의 샘플지역에서 반사된 LiDAR 자료의 높이분포변수를 이용하여 임분단위의 수간재적을 추정한 다음, 앞 세부연구에서 수행한 방법을 이용하여 임분의 생체량을 추정하였다. 변수는 임분 내에서 반사되는 LiDAR 자료의 평균높이, 최대 최소높이, 높이값들의 표준편차, 변이계수, 첨도, 왜도, 식생반사비율, 10분위 높이자료와 강도데이터의 기술통계량 등을 사용하였다. 그리고, 최종적인 임분수간재적은 다중회귀분석을 통하여 수행되었다. 다중회귀분석을 통하여 각 변수들은 임분수간재적과 가장 관련있는 2~3개의 변수들로 추려졌으며, 추정된 회귀식의 결정계수는 0.66으로 분석되었다. 또한 유보표본을 이용하여 검증한 결과의 결정계수는 0.59로 분석되어 LiDAR 자료의 높이분포변수들은 임분의 재적을 비교적 잘 설명할 수 있음이 밝혀졌다.

  • PDF

Design of Location Recognition and ID Identification for NFT Reports in Metaverse-based Field_study Trip (메타버스기반 체험학습 NFT보고서의 위치인식과 ID식별 설계)

  • Mingoo Kang
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.38-44
    • /
    • 2023
  • In this paper, a blockchain-based platform of NFT(Non-Fungible Token) reports was proposed to ensure the reliable performance contents of field study trip. It is possible to identify and manage the personal multi biomeric authentication user ID of activity records for students in a mobile IP-based metaverse with the linkage of extended reality(XR). At this time, many quests and incentives of platform are provided to induce students to experience smart and fun field studying facilities by linking real trip experiences and virtual extended_reality studies in the metaverse interworking.

Secure biometric information delivery scheme of implantable device using code-division multiplexing method (코드 분할 다중화 방식을 이용한 체내삽입장치의 안전한 생체 정보 전달 기법)

  • Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.14 no.3
    • /
    • pp.235-241
    • /
    • 2016
  • Among recent issues emerging in the areas related to the society, health has received the most attention. In this paper, for a patient unable to do self-care because of worsened diseases, a biological information transfer method is proposed by which the disease information can be securely managed, by attaching an implantable device into the body. Our method object of the invention is to prevent a third party from illegally intercepting and interfering with the biological information attached to the insertion device in the body. In the proposed technique to improve the safety of the patient between the hospital and physician by assigning each code to the biometric information of the patient in order to prevent a third party tapping and interfering. In addition, our method is assigned a code necessary for encoding in advance to confirm the biological information between the patient and the hospital (doctor) in a manner dividing the bio-information code. In particular, the proposed technique makes a third party unable to illegally tap or interfere in, by previously generating a code used for encoding so that it can be stored in the database of the hospital, which not only decreased hospital care time to 6.9%, but also increased work efficiency rate up to 12.7%.