• Title/Summary/Keyword: 다중 반송파

Search Result 244, Processing Time 0.025 seconds

Phase Tracking for Orthogonal Frequency Division Multiplexing Systems (직교 주파수 분할 다중화 시스템을 위한 위상 오차 추적)

  • Jeon, Tae-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.61-67
    • /
    • 2006
  • This paper proposes the algorithm for tracking of the residual phase errors incurred by carrier frequency offset and sampling frequency offset in the orthogonal frequency division multiplexing (OFDM) systems which are suitable for high data rate wireless communications. In the OFDM systems the subcarriers which are orthogonal to each other are modulated by digital data and transmitted simultaneously. The carrier frequency offset causes degradation of signal to noise ratio(SNR) performance and interference between the adjacent subcarriers. The errors in the sampling timing caused by the sampling frequency difference between the transmitter and the receiver sides also cause a major performance degradation in the OFDM systems. The residual error tracking and compensation mechanism is essential in the OFDM system since the carrier and the sampling frequency offset cause the loss of orthogonality resulting in the system performance loss. This paper proposes the scheme where the channel gain and the payload data information are reflected in the residual error tracking process which results in the reduction of the estimation error and the tracking performance improvements under the frequency selective fading wireless channels.

Performance Evaluation of MC-DS-CDMA Systems over Time Variant Channels (시변 채널 하에서의 MC-DS-CDMA 시스템의 성능 분석)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.581-586
    • /
    • 2010
  • MC-DS-CDMA is technique where a single data symbol is transmitted at multiple subcarriers which are orthogonal to each other. With this technique, frequency diversity can be achieved. Time variant channels lead to interchannel interference which increases the bit error rate for MC-DS-CDMA systems. The performance of PSAM MC-DS-CDMA system over time variant channels is analyzed. The BER performance of this system over multipath fading environment is evaluated, considering the channel estimation error, carrier frequency offset.

Multiple Orthogonal Subcarrier Modulation based High-Speed UHF RFID System for Multiple-/Dense-Interrogator Environments (다중/집중리더 환경에 적합한 다중 직교 부반송파 변조 기반 고속 UHF RFID 시스템)

  • Park, Hyung Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.67-74
    • /
    • 2016
  • This paper presents a novel multiple orthogonal subcarrier modulation based UHF band RFID communication system. In tag-to-reader communication, the demonstration system can deliver 1.6 Mbps through four subcarriers. To improve data rate while suppressing increase in circuit complexity, tag employs square-waves as the subcarriers and uses individual load modulators for each subcarrier. By using multiple orthogonal subcarrier based modulation, proposed communication system can be operated under existing UHF band RFID regulation. In reader, an OFDM demodulator is used. Since the tag backscatters the reader's CW carrier, carrier frequency offset compensation is not necessary in reader demodulator. Experimental results show that the demonstration system achieves a bit error rate of 10-5 at an Eb/N0 of 10.8 dB.

Performance Analysis of Multi-Carrier DS-CDMA System in Multipath Rician Fading Channel (다중경로 라이시안 페이딩 채널에서 Multi-Carrier DS-CDMA 시스템의 성능 해석)

  • 김영철;노재성;오창헌;조성준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.378-390
    • /
    • 2001
  • In this paper, it is analyzed that the error performance of a Multi-Carrier DS-CDMA system in a single cell with multipath Rician fading and multiple access interference (MAI) and the error performance of the system is compared with that of a Sing1e-Carrier DS-CDMA system. Moreover, the convolutional coding techniques with code rate of 1/2, 1/3, and 1/4 are adopted in order to improve the error performance degraded by the multipath fading and MAI and performance improvement through the coding techniques is analyzed. As a result, it is shown that the number of users in each system can be determined by the number of branches of the rake receiver in a Single-Carrier DS-CDMA system and the number of carriers in a Multi-Carrier DS-CDMA system. Furthermore, the convolutional coding should be chosen with considering the trade-off between coding gain and a power limitation in a Multi-Carrier DS-CDMA system. In case of increasing the number of carriers, the processing gain is decreased but the error performance is improved through the effect of frequency diversity and the system can be possibility implemented due to the low chip rate.

  • PDF

Robust fine carrier offset estimation for OFDM in Doppler conditions (도플러 환경에 강인한 OFDM 반송파 미세 주파수 동기)

  • Kang, Eun-Su;Han, Dong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.109-114
    • /
    • 2009
  • An orthogonal frequency division multiplexing(OFDM) system is effective to bandwidth because of orthogonality of subcarriers and robust to multipath fading. However, if there is a frequency offset, we lose the orthogonality of subcarriers and that results in inter-carrier interference(ICI) which increases errors in the system. In this paper, we propose an algorithm that estimates the fine frequency offset using a correlation method in OFDM systems. This scheme compares two correlation values in different frequency offsets with opposite directions. From the difference between two correlation values we can derive a fine frequency offset estimation algorithm. Its performance is verified by computer simulations.

Performance Analysis of Channel Compensation and Channel Coding Techniques based on Measured Maritime Wireless Channel in VHF-band Ship Ad-hoc Network (VHF 대역 선박 간 애드혹 네트워크에서 실측 해상채널에 기반한 채널 보상과 채널 부호화 기법의 성능분석)

  • Jeon, Kwang-Hyun;Hui, Bing;Chang, Kyung-Hi;Kim, Seung-Geun;Kim, Sea-Moon;Lim, Yong-Kon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5B
    • /
    • pp.517-529
    • /
    • 2011
  • In this paper, the parameters of the RTT (Radio Transmission Techniques) for SANET (Ship Ad-hoc NETwork), which is considered for the next generation maritime communication systems, are set up. A channel model has been analyzed based on the practical measured maritime wireless channel in VHF (Very-High Frequency) for SANET system. Also, by considering the frame structure including preamble, guard time and pilots for both single and multi-carrier systems, the BER (Bit Error Rate) performances are evaluated and analyzed in the aspects of channel compensation and channel coding techniques. Based on the simulation results, optimal modulation & coding schemes are suggested for SANET. That is, in single-carrier system by using differential modulation schemes, channel compensation is not necessary. However, channel coding is helpful to achieve additional gain. On the other hand, when 16-QAM modulation is employed in multi-carrier system, the implementation of both channel compensation and channel coding techniques show huge performance gain for various of K values, which are related to different maritime environments, and the rolling effects of wave.

Burst Assembly Scheme based on SCM for Avoidance of Burst Collision in Optical Burst-Switched Networks (OBS 망에서 버스트 충돌 회피를 위한 SCM 기반의 버스트 생성 기법)

  • 이해정;김영천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6B
    • /
    • pp.538-547
    • /
    • 2004
  • Optical Burst Switched (OBS) networks usually employ one-way reservation by sending a burst control packet (BCP) with a specific offset time, before transmitting each data burst frame (BDF). Therefore, The quality of service may be degraded because contentions may lead to loss of BDFs. Especially, this phenomenon becomes more serious when burst size is longer. This necessitates an effective method of prevention to avoid burst collision in nodes. OBS networks can employ several methods to avoid such burst losses. One is that burst size is cut short to reduce burst loss probability during scheduling time. In this paper, we evaluate the burst generation and transmission using Sub-Carrier Multiplexting (SCM) in OBS networks. We propose an appropriate burst assembly architecture and transmission scheme based on SCM in OBS networks. The performance of SCM in OBS networks is examined in terms of number of Sub-Carriers per wavelength, burst loss probability, throughput, and total bandwidth of an optical fiber.

A Study on the Transmission Performance for Multimedia Communication (멀티미디어 통신을 위한 OFDM의 전송 성능에 관한 연구)

  • 김남성;강희조;이권현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.449-453
    • /
    • 2004
  • 본 연구에서는 고속 광대역의 정보신호를 다중경로 페이딩 환경에서 효율적으로 전송하기 위한 M-ary QAM신호와 OFDM전송방식을 사용할 때 반송파의 주파수 옵셋이 발생하는 동기오차가 수신시스템에 미치는 영향으로 인한 수신 성능을 분석하였다.

  • PDF

Accuracy Enhancement using Network Based GPS Carrier Phase Differential Positioning (네트워크 기반의 GPS 반송파 상대측위 정확도 향상)

  • Lee, Yong-Wook;Bae, Kyoung-Ho
    • Spatial Information Research
    • /
    • v.15 no.2
    • /
    • pp.111-121
    • /
    • 2007
  • The GPS positioning offer 3D position using code and carrier phase measurements, but the user can obtain the precise accuracy positioning using carrier phase in Real Time Kinematic(RTK). The main problem, which RTK have to overcome, is the necessary to have a reference station(RS) when using RTK should be generally no more than 10km on average, which is significantly different from DGPS, where distances to RS can exceed several hundred kilometers. The accuracy of today's RTK is limited by the distance dependent errors from orbit, ionosphere and troposphere as well as station dependent influences like multipath and antenna phase center variations. For these reasons, the author proposes Network based GPS Carrier Phase Differential Positioning using Multiple RS which is detached from user receiver about 30km. An important part of the proposed system is algorithm and software development, named DAUNet. The main process is corrections computation, corrections interpolation and searching for the integer ambiguity. Corrections computation of satellite by satellite and epoch by epoch at each reference station are calculated by a Functional model and Stochastic model based on a linear combination algorithm and corrections interpolation at user receiver are used by area correction parameters. As results, the users can obtain the cm-level positioning.

  • PDF