• Title/Summary/Keyword: 다중회귀분석기법

Search Result 238, Processing Time 0.026 seconds

Development of the Deterioration Models for the Port Structures by the Multiple Regression Analysis and Markov Chain (다중 회귀분석 및 Markov Chain을 통한 항만시설물의 상태열화모델 개발)

  • Cha, Kyunghwa;Kim, Sung-Wook;Kim, Jung Hoon;Park, Mi-Yun;Kong, Jung Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.229-239
    • /
    • 2015
  • In light of the significant increase in the quantities of goods transported and the development of the shipping industry, the frequency of usage of port structures has increased; yet, the government's budget for the shipping & port of SOC has been reduced. Port structures require systematically effective maintenance and management trends that address their growing frequency of usage. In order to construct a productive maintenance system, it is essential to develop deterioration models of port structures that consider various characteristics, such as location, type, use, constructed level, and state of maintenance. Processes for developing such deterioration models include examining factors that cause the structures to deteriorate, collecting data on deteriorating structures, and deciding methods of estimation. The techniques used for developing the deterioration models are multiple regression analysis and Markov chain theory. Multiple regression analysis can reflect changes over time and Markov chain theory can apply status changes based on a probabilistic method. Along with these processes, the deterioration models of open-type and gravity-type wharfs were suggested.

Research for the Chatting Service to Effectiveness of e-Learning in a Cyber University (사이버대학에 있어서 채팅서비스의 이러닝 학습효과에 대한 탐색)

  • Lee, Min Jung;Lim, Hyo Yeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.01a
    • /
    • pp.73-74
    • /
    • 2018
  • 최근 사이버대학들은 치열한 입시경쟁을 겪고 있다. 이에 학교들은 교육질 개선을 위하여 다양한 노력을 하고 있다. S 사이버대학의 경우 최초로 전과목별로 실시간 채팅서비스를 제공하여 동영상 강의와 게시판의 한계를 극복하고자 하고 있다. 본 연구에서는 이러닝 교육의 학습효과를 종속변수로 설정하고, 학습내용, 교수설계요인과 채팅서비스를 독립변수로 투입하여, 다중회귀분석을 기법을 통해 분석하였다. 분석결과 학습내용, 교수설계요인, 채팅서비스 모두는 학습효과에 영향을 미치는 것으로 나타났다. 본 연구에서는 전교과목에 적용한 채팅서비스는 온라인 교육 효과를 높일 수 있는 방안임을 확인하였고, 효과적인 채팅 서비스의 활용방안을 제시하고자 한다.

  • PDF

Adaptive Short-Term Vehicle Speed Prediction Models (적응성 있는 단기간 속도 예측모형 개발에 관한 연구)

  • 조범철
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10a
    • /
    • pp.265-274
    • /
    • 1998
  • 본 논문은 도로를 주행하는 차량의 지점속도에 대하여 단기간(short-term)으로 예측하는 네 가지의 모형들에 대한 개발 및 결과의 비교하고 평가했다. 사용된 기법들로는 다중회귀분석, 시계열분석(ARIMA), 인공 신경망, 칼만필터링 등이며, 모형의 구출을 위하여 다수의 독립변수 및 입력변수가 요구되는 다중회귀분석과 인공 신경망에서는 연속방정식에서 고려되는 변수들간의 단순상관계수 및 편상관계수의 계산을 통해서 입력변수가 설정이 되었으며, 시계열분석(ARIMA)과 칼만필터링 등 단일 입력 변수만을 요하는 모형에서는 바로 전 시간대와 현재시간대의간격동안 속도의 변화량을 입력변수로 설정하였다. 속도를 비롯해서 교통 데이터는 현장자료를 사용하였는데, 이는 서울의 한강 옆에 위치한 올림픽대로 중 한강대로에 위치한 검지기 3개를 통해서 천호동 방면으로 이동하는 교통류에 대해서 17시간 (00시~17시)동안 수집했다. 17시간 수집했는데 그중에 검지된 속도는 14km/h에서 98km/h까지 변하는 등, 수집된 자료에는 다양한 교통상태가 포함되어 있는데 이는 각 모형들의 정확한 예측력과 적응성을 평가하기 위함이었다. 각 모형은 예측하고자 하는 시점으로부터 1, 5, 10, 15분 후의 속도를 예측하는 것으로 총 4가지의 예측시간간격으로 각각 실험되었다. 결과는 전반적으로 신뢰성 있게 나왔으나 그중에서도 정확성면에서는 인공신경망과 칼만필터링이 우수했고 적응성면에서는 칼만필터리딩 탁월했다. 또한 1분 후의 속도를 예측하는 결과들은 모형들간에 거의 비슷한 정확도를 보여주었는데 이는 입력변수의 설정이 중요한 것임을 보여주는 것이라 판단된다. 있는 기법이다.적으로 세부적 차종분류로 접근한다.의 영향들을 고려함으로써 가로망 설계 과정에서 가로망의 상반된 역할인 이동성과 접근성의 비교가 가능한 보다 현실적인 가로망 설계 모형을 구축하고자 한다. 지금까지 소개된 가로망 설계모형들은 용량변화에 대한 설계변수의 형태에 따라 이산적 가로망 설계 모형과 연속적 가로망 설계모형으로 나뉘어지게 된다. 본 논문의 경우, 계산속도의 향상 측면에서는 연속적 가로망 설계 모형을 도입할 수 있지만, 이때 요구되는 도로용량이 이산적인 변수(차선 수)로 결정되어야만 신호제어 변수를 결정할 수 있기 때문에, 이산적 가로망 설계 모형이 사용된다. 하지만, 이산적 설계모형의 경우 조합최적화 문제이므로 정확한 최적해를 구하기 위해서는 상당한 시간이 소요되며, 경우에 따라서는 국부 최적해에 빠지게 된다. 이러한 문제를 극복하기 위해, 우선 이상적 모형의 근사화, 혹은 조합최적화문제를 위해 개발된 Simulated Annealing기법의 적용, 연속적 모형의 변수를 이산화하는 방법 등 다양한 모형들을 고려해 본 뒤, 적절한 모형을 적용할 것이다. 가로망 설계 모형에서 신호제어를 고려하기 위해서는 주어진 가로망에 대한 통행 배정과정에서 고려되는 통행시간을 링크통행시간과 교차로 지체시간을 동시에 고려해야 하는데, 이러한 문제의 해결을 위해서 최근 활발히 논의되고 있는 교차로에서의 신호제어에 대응하는 통행배정 모형을 도입하여 고려하고자 한다. 이를 위해서 지금까지 연구되어온 Global Solution Approach와 Iterative Approach를 비교, 검토한 뒤 모형에 보다 알맞은 방법을 선택한다. 차량의

  • PDF

Study on the effective parameters and a prediction model of the shield TBM performance (쉴드 TBM 굴진 주요 영향인자분석 및 굴진율 예측모델 제시)

  • Jo, Seon-Ah;Kim, Kyoung-Yul;Ryu, Hee-Hwan;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.347-362
    • /
    • 2019
  • Underground excavation using TBM machines has been increasing to reduce complaints caused by noise, vibration, and traffic congestion resulted from the urban underground construction in Korea. However, TBM excavation design and construction still need improvement because those are based on standards of the technologically advanced countries (e.g., Japan, Germany) that do not consider geological environment in Korea at all. Above all, although TBM performance is a main factor determining the TBM machine type, duration and cost of the construction, it is estimated by only using UCS (uniaxial compressive strength) as the ground parameters and it often does not match the actual field conditions. This study was carried out as part of efforts to predict penetration rate suitable for Korean ground conditions. The effective parameters were defined through the correlation analysis between the penetration rate and the geotechnical parameters or TBM performance parameters. The effective parameters were then used as variables of the multiple regression analysis to derive a regression model for predicting TBM penetration rate. As a result, the regression model was estimated by UCS and joint spacing and showed a good agreement with field penetration rate measured during TBM excavation. However, when this model was applied to another site in Korea, the prediction accuracy was slightly reduced. Therefore, in order to overcome the limitation of the regression model, further studies are required to obtain a generalized prediction model which is not restricted by the field conditions.

Modelling on the Carbonation Rate Prediction of Non-Transport Underground Infrastructures Using Deep Neural Network (심층신경망을 이용한 비운송 지중구조물의 탄산화속도 예측 모델링)

  • Youn, Byong-Don
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.220-227
    • /
    • 2021
  • PCT (Power Cable Tunnel) and UT (Utility Tunnel), which are non-transport underground infrastructures, are mostly RC (Reinforced Concrete) structures, and their durability decreases due to the deterioration caused by carbonation over time. In particular, since the rate of carbonation varies by use and region, a predictive model based on actual carbonation data is required for individual maintenance. In this study, a carbonation prediction model was developed for non-transport underground infrastructures, such as PCT and UT. A carbonation prediction model was developed using multiple regression analysis and deep neural network techniques based on the actual data obtained from a safety inspection. The structures, region, measurement location, construction method, measurement member, and concrete strength were selected as independent variables to determine the dependent variable carbonation rate coefficient in multiple regression analysis. The adjusted coefficient of determination (Ra2) of the multiple regression model was found to be 0.67. The coefficient of determination (R2) of the model for predicting the carbonation of non-transport underground infrastructures using a deep neural network was 0.82, which was superior to the comparative prediction model. These results are expected to help determine the optimal timing for repair on carbonation and preventive maintenance methodology for PCT and UT.

Developing Optimal Pre-Cooling Model Based on Statistical Analysis of BEMS Data in Air Handling Unit (BEMS 데이터의 통계적 분석에 기반한 공조기 최적 예냉운전 모델 개발)

  • Choi, Sun-Kyu;Kwak, Ro-Yeul;Goo, Sang-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.10
    • /
    • pp.467-473
    • /
    • 2014
  • Since the operating conditions of HVAC systems are different from those for which they are designed, on-going commissioning is required to optimize the energy consumed and the environment in the building. This study presents a methodology to analyze operational data and its applications. A predicted operation model is to be produced through a statistical data analysis using multiple regressions in SPSS. In this model, the dependent variable is the pre-cooling time, and the independent variables include the power output of the supply air inverter during pre-cooling, the supply air set temperature during pre-cooling, the indoor temperature-indoor set temperature just before pre-cooling, supply heat capacity, and the lowest outdoor air temperature during non-cooling/non-heating hours. The correlation coefficient R2 of the multiple regression model between the pre-cooling hour and the internal/external factors is of 0.612, and this could be used to provide information related to energy conservation and operating guidance.

A Study on the Geomorphological Characteristics of Development and Flood Hazards in Watershed (유역분지의 개발 및 수해 발생과 관련된 지형 인자 분석 -용인시 서북부 지역을 사례로-)

  • Seong, Hyo-Hyeon;Ban, Hyo-Won
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.101-109
    • /
    • 2002
  • Since the industrialization spread out, the metropolitan areas of Seoul have been urbanized rapidly in Korea, without concern for the quality of further development and sufficient environmental management. Due to this fact, it has become increasingly more apparent that natural hazards, such as floods and landslides, occur frequently after the summer's heavy rains, and because of that, the scale of damage is getting larger. The purpose of this study is first to analyze the relationship between development and floods in the sub-basins of the study area. In addition to this, I would like to compare the influences of geomorphological characteristics upon the floods occurring in both the whole study area and the developed area in sub-basins.

  • PDF

Estimation of Carbon Emissions Price Using Big Data Analysis Method (빅데이터 분석기법을 활용한 탄소배출권 가격 예측)

  • Im, Giseong;Park, Sangwon;Jang, Jiyoung;Lee, Minwoo;Han, Seungwoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.50-51
    • /
    • 2019
  • Globally, South Korea is a country that has a lot of $CO_2$ emissions and has steadily increased its total greenhouse gas emissions since the 1990s. With the recent implementation of the carbon emission trading system in Korea, the importance of calculating $CO_2$ emissions of construction equipment is increasing, hence the need for accurate calculation of environmental penalties through allocating carbon emission rights. This study presents a methodology to predict the price of carbon credits using big data analysis method. This methodology is based on correlating and regression analysis of trends in carbon emission prices and search volumes. This study aims to support faster and more accurate budget calculations in the planning of the construction process based on the predicted price of carbon emission rights.

  • PDF

Relationships between Topological Structures of Traffic Flows on the Subway Networks and Land Use Patterns in the Metropolitan Seoul (수도권 지하철망 상 통행흐름의 위상학적 구조와 토지이용의 관계)

  • Lee, Keum-Sook;Hong, Ji-Yeon;Min, Hee-Hwa;Park, Jong-Soo
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.10 no.4
    • /
    • pp.427-443
    • /
    • 2007
  • The purpose of this study is to investigate spacio-temporal structures of traffic flows on the subway network in the Metropolitan Seoul, and the relationships between topological structures of traffic flows and land use patterns. In particular we analyze in the topological structures of traffic flows on the subway network in time dimension as well as in spatial dimension. For the purpose, this study utilizes data mining techniques to the one day T-card transaction data of the last four years, which has developed for exploring the characteristics of traffic flows from large scale trip-transaction databases. The topological structures of traffic flows on the subway network has changed considerably during the last four years. The volumes of traffic flows, the travel time and stops per trip have increased until 2006 and decreased again in 2007. The results are visualized by utilizing GIS and analyzed, and thus the spatial patterns of traffic flows are analyzed. The spatial distribution patterns of trip origins and destinations show substantial differences among time zones during a day. We analyze the relationships between traffic flows at subway stops and the geographical variables reflecting land use around them. We obtain 6 log-linear functions from stepwise multiple regression analysis. We test multicollinearity among the variables and autocollelation for the residuals.

  • PDF

The probabilistic estimation of inundation region using a multiple logistic regression analysis (다중 Logistic 회귀분석을 통한 침수지역의 확률적 도출)

  • Jung, Minkyu;Kim, Jin-Guk;Uranchimeg, Sumiya;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.121-129
    • /
    • 2020
  • The increase of impervious surface and development along the river due to urbanization not only causes an increase in the number of associated flood risk factors but also exacerbates flood damage, leading to difficulties in flood management. Flood control measures should be prioritized based on various geographical information in urban areas. In this study, a probabilistic flood hazard assessment was applied to flood-prone areas near an urban river. Flood hazard maps were alternatively considered and used to describe the expected inundation areas for a given set of predictors such as elevation, slope, runoff curve number, and distance to river. This study proposes a Bayesian logistic regression-based flood risk model that aims to provide a probabilistic risk metric such as population-at-risk (PAR). Finally, the logistic regression model demonstrates the probabilistic flood hazard maps for the entire area.