• 제목/요약/키워드: 다중회귀분석기법

검색결과 238건 처리시간 0.039초

풍속 예측 보정을 위한 Genetic Programing 탐색 기법의 개선 (Improvement of Search Method of Genetic Programing for Wind Prediction MOS)

  • 오승철;서기성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1349-1350
    • /
    • 2015
  • 풍속은 다른 기상요소들보다 순간 변동이 심하고 국지성이 강하여 수치 예보 모델만으로 예측의 정확성을 높이기가 어렵다. 기상청의 단기 풍속 예보는 전 지구적 통합 예보모델인 UM(Unified Model)의 예측값에 MOS(Model Output Statictics)를 통한 보정을 수행하며, 보정식의 생성에 다중선형회귀분석 방법을 사용한다. 본 연구자는 유전프로그래밍(Genetic Programming)을 이용한 비선형 회귀분석 기반의 보정식 생성을 통하여 이를 개선한 바 있는데, 본 연구에서는 보다 향상된 성능을 얻기 위하여 GP 기법 측면에서 Automatically Defined Functions과 다군집(Multiple Populations) 수행을 통해 성능을 높이고자 한다.

  • PDF

능형회귀분석을 활용한 부동산 헤도닉 가격모형의 정확성 및 해석력 향상에 관한 연구 - 서울시 구로구 아파트를 대상으로 - (Using Ridge Regression to Improve the Accuracy and Interpretation of the Hedonic Pricing Model : Focusing on apartments in Guro-gu, Seoul)

  • 구본상;신병진
    • 한국건설관리학회논문집
    • /
    • 제16권5호
    • /
    • pp.77-85
    • /
    • 2015
  • 헤도닉 가격 모형은 부동산 가격에 영향을 미치는 여러 요소를 모델링하는데 활용되는 대표적 방법이다. 부동산 가격은 전용면적, 방의 개수, 주차공간과 같은 내재적 속성 뿐 아니라 주변 선호/비선호시설의 존재여부에 따라 영향을 받는다. 주변 입지시설의 경우, 그 영향을 파악하기 위해서는 해당 부동산과의 인접거리를 설명변수로 사용하게 된다. 그러나 다수의 입지시설이 인접해 있는 경우에는 설명 변수 간 다중공선성이 발생하는 문제가 존재한다. 본 연구에서는 분산팽창지수 및 능형회귀분석을 이용해 다중공선성을 파악하고 유의한 설명변수를 선별하는데에 활용하였다. 이들 기법을 서울시 구로구 아파트들에 적용한 결과, 전철 차량 기지, 디지털 단지 및 위도에 해당하는 변수간의 다중공선성을 파악하였으며, 능형회귀분석을 통해 적합한 변수들을 체계적으로 선정할 수 있었다. 본 사례를 통해 상기 기법들이 더 정확하고 적정한 헤도닉 가격 모형을 구축하는데 중요한 보완적 기능을 해준다는 것을 알 수 있다.

인공지능을 이용한 급성 뇌졸중 환자의 재원일수 예측모형 개발 (Development of Predictive Model for Length of Stay(LOS) in Acute Stroke Patients using Artificial Intelligence)

  • 최병관;함승우;김촉환;서정숙;박명화;강성홍
    • 디지털융복합연구
    • /
    • 제16권1호
    • /
    • pp.231-242
    • /
    • 2018
  • 병원 재원일수의 효율적 관리는 병원의 수익과 환자의 진료비 절감을 위해 매우 중요한 요소이다. 이러한 재원일수의 효율적 관리를 위해서는 병원들이 재원일수에 대해서 벤치마킹을 할 수 있도록 지원이 필요하고 재원일수 절감의 구체적인 방향을 제시해 줄 수 있는 재원일수 예측모형의 개발이 필요하다. 본 연구에서는 2013년과 2014년도 퇴원손상환자자료 중 급성뇌졸중 환자를 추출하여 분석용 자료를 만들고 인공지능을 이용하여 급성뇌졸중 환자의 재원일수 예측모형을 개발하였다. 분석용 자료는 훈련용 60%, 평가용 40%로 분류하였다. 모형개발은 전통적 통계기법인 다중회귀분석기법과 인공지능기법인 대화식 의사결정나무기법, 신경망 기법, 그리고 이들을 모두 통합한 앙상블기법을 이용하였다. 모형평가는 Root ASE(Absolute error) 지표를 이용하였는데, 다중회귀분석은 23.7, 대화식결정나무 23.7, 신경망 분석은 22.7, 앙상블은 22.7로 나타났고 이를 통하여 재원일수 예측모형 개발에 인공지능기법의 유용성이 입증되었다. 앞으로 재원일수 예측모형개발에 인공지능 기법을 보다 효율적으로 활용할 수 있는 방안에 대해서 계속적인 연구가 이루어 질 필요가 있다.

다중 회귀 기반의 음악 감성 분류 기법 (Multiple Regression-Based Music Emotion Classification Technique)

  • 이동현;박정욱;서영석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권6호
    • /
    • pp.239-248
    • /
    • 2018
  • 4차 산업혁명 시대가 도래하면서 기존 IoT에 감성지능이 포함된 신기술들이 연구되고 있다. 그 중 현재까지 다양하게 진행된 음악 서비스 제공을 위한 감성 분석 연구에서는 인공지능, 패턴인식 등을 활용한 사용자의 감성 인식 및 분류 등에만 초점을 맞추고 있는 상황이나, 사용자의 특정 감성에 해당하는 음악들을 어떻게 자동적으로 분류할지에 대한 감성별 음악 분류기법들에 대한 연구는 매우 부족한 상황이다. 본 연구에서는 최근 각광을 받고 있는 사람들의 감성과 관련된 음악관련 서비스를 개발할 시, 음악을 감성 범위에 따라 높은 정확도로 분류할 수 있도록 하는 감성 기반 자동 음악 분류기법을 제안한다. 데이터수집 시 Russell 모델을 바탕으로 설문조사를 하였으며, 음악의 특성으로 평균파장크기(Average amplitude), peak평균(Peak-average), 파장 수(The number of wavelength), 평균파장 길이(Average wavelength), BPM(Beats per minute)을 추출하였다. 해당 데이터들을 바탕으로 회귀 분석을 이용하여 다중회귀식을 도출하였으며, 각 감성에 대한 표준 수치들을 도출하여 새로운 음악 데이터와 해당 각 감성에 대한 표준 수치들과의 거리 비교를 통해 음악의 감성을 분류시키는 작업을 실시하였다. 이를 통해 나온 결과에 회귀분석을 통하여 나온 데이터를 대입하여 해당 데이터와 각 감성들의 비율을 통해 최종적으로 판단된 감성을 추출하였다. 본 연구에서 실험한 감성 일치율의 2가지 방식에 대해서 제안한 기법의 경우 70.94%, 86.21%의 일치율이 나왔고, 설문참가자들의 경우 66.83%, 76.85%의 일치율이 나옴으로써, 연구 기법을 통한 감성의 판단이 설문참가자들의 평균적인 판단보다 4.11%, 9.36%의 향상된 수치를 제공함을 알 수 있었다.

지역화 유황곡선을 작성기법을 이용한 유역의 일유황곡선 및 유량 예측 (Prediction of the daily-flow duration curve and streamflow using the regional flow duration curve creation technique)

  • 추경수;정세진;김병식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.132-132
    • /
    • 2020
  • 유황곡선은 하천유량의 변동성을 함축적으로 나타내고 연간유량 분석방법(calendar-year method)과 전 자료기간유량분석방법(total-period method)을 이용하여 작성하고 분석할 수 있다. 본 연구는 유황곡선 상에서 유역특성인자들을 포함시켜 작성하는 방법을 제시하였고 지형 및 기상학적 인자를 통해 지역화 시킨 유황곡선을 통해 미계측 유역의 유황곡선을 추정할 수 있는 곡선을 개발하고자 한다. 이를 위해 유역의 특성인자자료를 수집하여 독립변수로 설정하였고 다중회귀분석을 실시하여 변수들을 지역화 시켰다. 지역화 시킨 변수들을 유황곡선에 반영하여 대상지역에서 하나의 유황곡선으로 나타내었다. 도출한 유황곡선을 자료가 있는 지역을 미계측유역이라 가정하고 검증하였다. 검증결과 실제자료와 유사하게 나타나는 것을 확인할 수 있었고 이를 통해 미계측 유역의 유출량 자료가 부족한 유역에 대한 예측과 과거 많은 부분이 결측된 유역에 대한 유출량 예측도 가능할 것이라 판단된다. 또한 강우시나리오를 통해 지형인자가 고려된 유황곡선을 이용한 다양한 자료분석을 실시할 수 있을 것이라 판단된다.

  • PDF

유역특성인자를 활용한 Sacramento 장기유출모형의 매개변수 지역화 기법 연구 (A Study on Regionalization of Parameters for Sacramento Continuous Rainfall-Runoff Model Using Watershed Characteristics)

  • 김태정;정가인;김기영;권현한
    • 한국수자원학회논문집
    • /
    • 제48권10호
    • /
    • pp.793-806
    • /
    • 2015
  • 미계측유역의 유출량 모의는 수문학 분야에서 필수적인 사항이다. 강우-유출 모형을 이용하여 신뢰성 있는 유출량을 모의하기 위한 핵심사항은 강우-유출 모형의 매개변수를 추정하는 것이다. 하지만 현재 우리나라는 불충분한 수문자료로 인해 매개변수 추정에 어려움이 존재한다. 본 연구의 목표는 불확실성 반영을 위한 Bayesian 통계기법 기반의 강우-유출 모형의 매개변수를 지역화 하는 것이다. 그 방법은 다음과 같다. 첫째, 본 연구는 세계적으로 널리 사용되고 있는 Sacramento 강우-유출 모형에 Bayesian Markov Chain Monte Carlo 기법을 연계한 Bayesian Sacramento 강우-유출 모형을 사용하여 계측유역을 대상으로 13개 매개변수를 최적화하고 각 매개변수의 사후분포를 도출하였다. 둘째, 매개변수와 유역특성인자 사이에 회귀특성을 얻기 위해 다중선형회귀분석을 적용하여 유역특성을 고려한 지역화 매개변수를 결정하였다. 다중회귀분석을 통하여 산정된 지역화 매개변수를 계측유역에 전이하여 유출량을 모의 후 통계적 효율기준인 N-S계수, 일치계수 및 상관계수를 사용하여 지역화 매개변수 검증을 수행하였다.

다중회귀분석을 통한 해외 건설 프로젝트 특성요인이 손익율에 미치는 영향 분석 (An Analysis of Profitability Study of Overseas Construction Projects using Multiple-Regression)

  • 김진언;김예상
    • 한국건설관리학회논문집
    • /
    • 제15권2호
    • /
    • pp.95-103
    • /
    • 2014
  • 1960년대부터 우리나라 건설사는 중동 건설 붐을 통해 노동집약적인 건설산업을 부흥시키기 위해 진출을 하였고, 이를 자양분으로 삼아 경제 부흥에 큰 일조를 하였다. 하지만 최근 20년간 해외 건설산업은 매출규모는 이전에 비해 비약적인 증대를 보였으나 이익 측면에서는 개선이 이루어지지 않으며 오히려 그 추세는 하향세를 그리는 것을 알 수 있다. 따라서 본 연구에서는 대형시공사의 최근 30년간 180여개의 프로젝트를 구성하는 요소가 손익율에 어떠한 영향을 미치는지 통계적인 시각에서 그 독립변수가 종속변수에 미치는 영향에 대해 알아보려 한다. 통계적인 기법은 다중회귀분석을 선택하였고, 다수의 독립변수가 하나의 종속변수에 미치는 영향정도를 도출하여 향 후 해외 건설 프로젝트 입찰 또는 수행 시 참고가 가능한 판별 기준을 설정하고자 한다.

유역특성에 따른 LOADEST 회귀모형 매개변수 추정 (Estimation of LOADEST coefficients according to watershed characteristics)

  • 김계웅;강문성;송정헌;박지훈
    • 한국수자원학회논문집
    • /
    • 제51권2호
    • /
    • pp.151-163
    • /
    • 2018
  • 본 연구에서는 미계측 유역에서 오염부하량 모의를 위해 LOADEST (LOAD Estimator) 기반 회귀모형의 최적 매개변수를 추정하고, 다중회귀분석 기법을 이용하여 유역특성에 따른 회귀 모의 모형의 매개변수 추정 방법을 개발하였으며, 개발된 모형의 적용성을 평가하였다. 오염부하량 모의모형으로, T-N (Total-Nitrogen)은 LOADEST의 5번 회귀모형을, T-P (Total-Phosphorous)는 3번 회귀모형을 선택하였다. 모의결과, T-N, T-P 모두 선택된 회귀모형이 실측치를 잘 반영하였으나, 두 물질 모두 오염부하량이 과소 모의되어 실측치와 편의가 발생하는 것으로 나타나, 분위사상법을 이용하여 모의치의 편의보정을 실시하였다. 보정결과, 모형의 정확도는 크게 변하지 않았으나, 오염부하량이 과소 모의 되는 경향이 감소하는 것으로 나타났다. 다중회귀분석을 이용하여 회귀모형 매개변수와 유역특성간의 회귀식을 개발하였으며, 개발된 식을 평가한 결과, 실측치를 잘 반영하여 모의할 수 있는 것으로 나타났으며, 기존 매개변수에 의한 모의치와 유사한 모의능력을 갖는 것으로 나타났다. 본 연구에서 개발된 매개변수 추정방법은 실측자료가 확보되지 않은 소유역에 대한 오염부하량 모의와 정책결정을 위한 스크린 모델로서 활용할 수 있을 것으로 사료된다.

로버스트추정에 바탕을 둔 주성분로지스틱회귀 (Principal Components Logistic Regression based on Robust Estimation)

  • 김부용;강명욱;장혜원
    • 응용통계연구
    • /
    • 제22권3호
    • /
    • pp.531-539
    • /
    • 2009
  • 로지스틱회귀분석은 고객관계관리를 위한 데이터마이닝 분야에서 많이 사용되는 기법인데, 이 분야의 모형설정 과정에서는 연관성이 매우 높은 설명변수들이 모형에 함께 포함되어 다중공선성의 문제를 유발하며, 더욱이 회귀자료에 이상점들이 포함되면 최우추정량은 심각한 결함을 갖게 된다. 두 가지 문제점을 동시에 해결하기 위하여 로버스트주성분로지스틱회귀를 적용할 수 있는데, 본 논문에서는 주성분의 선정기준을 결정하는 모형을 개발하고, 주성분모형에서의 추정치에 미치는 이상점의 영향을 축소하기 위한 로버스트추정법을 제안하였다. 제안된 추정법은 다중공선성과 이상점이 유발하는 문제들을 적절히 해결해 준다는 사실이 모의실험을 통하여 확인되었다.

다중회귀모형과 인공신경망모형을 이용한 금강권역 강수량 장기예측 (Application of multiple linear regression and artificial neural network models to forecast long-term precipitation in the Geum River basin)

  • 김철겸;이정우;이정은;김현준
    • 한국수자원학회논문집
    • /
    • 제55권10호
    • /
    • pp.723-736
    • /
    • 2022
  • 본 연구에서는 금강권역을 대상으로 최대 12개월까지 선행예측이 가능한 월 강수량 예측모형을 구축하였으며, 예측모형 구축에는 다중회귀분석과 인공신경망의 두 가지 통계적 기법을 적용하였다. 예측인자 후보로 NOAA에서 제공하는 글로벌 기후패턴 39종과 금강권역에 대한 기상인자 8종 등 총 47종의 기후지수를 활용하였다. 예측대상월을 기준으로 과거 40년간의 월 강수량과 기후지수와의 지연상관성 분석을 통해 상관도가 높은 기후지수를 예측인자로 활용하여 다중회귀모형 및 인공신경망 모형을 구축하였다. 1991~2021년에 대해 매월 예측결과의 평균값과 관측값과의 적합도를 분석한 결과, 다중회귀모형은 PBIAS -3.3~-0.1%, NSE 0.45~0.50, r 0.69~0.70으로 분석되었으며, 인공신경망모형은 PBIAS -5.0~+0.5%, NSE 0.35~0.47, r 0.64~0.70로, 다중회귀모형에 의해 도출된 예측치의 평균값이 인공신경망모형보다 관측치에 좀 더 근접한 것으로 나타났다. 각 월의 예측범위 안에 관측치가 포함될 확률을 분석한 결과에서는 다중회귀모형이 57.5~83.6%(평균 72.9%), 인공신경망모형의 경우에는 71.5~88.7%(평균 81.1%)로 인공신경망모형 결과가 우수한 것으로 나타났다. 3분위 예측확률을 비교한 결과는 다중회귀모형의 경우에는 25.9~41.9%(평균 34.6%), 인공신경망모형은 30.3~39.1%(평균 34.7%)로 비슷하며, 두 모형 모두 평균 33.3% 이상으로 월 강수량에 대한 장기예측성을 확인 할 수 있었다. 이상과 같이 두 모형의 예측성 차이는 비교적 크지 않은 것으로 나타났으나, 예측범위에 대한 적중률이나 3분위 예측확률로부터 판단할 때 예측성에 대한 월별 편차는 인공신경망모형의 결과가 상대적으로 작게 나타났다.