• 제목/요약/키워드: 다중특징

검색결과 1,192건 처리시간 0.032초

다중 로봇 시스템에서의 내력 해석 (Analysis of Internal Loading at Multiple Robotic Systems)

  • 정재헌;이병주;김희국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2402-2404
    • /
    • 2003
  • 다중 로봇 시스템에는 multiple arms, 다족 보행, 다중 손 등이 있다. 이러한 시스템들은 여러 개의 부속체인 로봇들이 물체를 파지하는 특징을 지닌다. 그러나 이러한 적용분야에서 물체를 파지하는 내력에 대한 개념은 각각 다르게 해석되어져 왔음을 살펴볼 수 있다. 본 논문에서는 내력은 로봇 말단에서의 움직임에는 영향을 주지 않지만, 정적 평형을 이루며 내부적으로 작용하는 힘과 모멘트라고 정의 하였고, 이러한 개념이 현존하는 다중 로봇 시스템에 일반적으로 적용할 수 있음을 제시한다. 또한 최소 놈 해에 있어서 내력이 존재하지 않는 조건과, 내력을 구성하는 기저를 밝혔고, 다양한 다중 로봇 시스템의 내력 해석에 사용할 수 있음을 제시하였다.

  • PDF

빠른 영역-합성곱 신경망을 이용한 다중 스케일 보행자 검출 방법 (Multi-scale Pedestrian Detection Method using Faster Region-Convolutional Neural Network)

  • 잔꾸억후이;김응태
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.1-4
    • /
    • 2019
  • 최근에 딥러닝 기술을 적용한 보행자 검출 연구가 활발히 진행되고 있다. 연구자들은 딥러닝 네트워크를 이용하여 보행자 오검출율을 낮추는 방법에 대해 지속적으로 연구하여 성능을 꾸준히 상승시켰다. 그러나 대부분의 연구는 다중 스케일 보행자가 분포되는 저해상도 영상에서 보행자를 제대로 검출하지 못하는 어려움이 존재한다. 따라서 본 연구에서는 기존의 Faster R-CNN구조를 기반으로 하여 새로운 다중 특징 융합 레이어와 다중 스케일 앵커 박스를 적용하여 보행자 오검출율을 줄이는 MS-FRCNN(Multi-scaleFaster R-CNN)구조를 제안한다. 제안된 방식의 성능 검증을 위해 Caltech 데이터세트를 이용하여 실험한 결과, 제안된 MS-FRCNN방식이 기존의 다른 보행자 검출 방식보다 다중 스케일 보행자 검출에서 medium 조건하에 5%, all 조건하에 3.9% 나아짐을 알 수 있었다.

  • PDF

Real-time Segmentation of Black Ice Region in Infrared Road Images

  • Li, Yu-Jie;Kang, Sun-Kyoung;Jung, Sung-Tae
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권2호
    • /
    • pp.33-42
    • /
    • 2022
  • 본 논문에서는 운전자한테 실시간으로 블랙 아이스 경고를 보내기 위해서 도로 영상에서 블랙 아이스 영역 분할을 위한 다중 척도 팽창 컨볼루션 특징 융합에 기반한 딥러닝 모델을 제안한다. 제안한 다중척도 팽창 컨볼루션 특징 융합 네트워크는 인코더 블록에 서로 다른 팽창 비율 컨볼루션을 병렬로 추가하고, 서로 다른 해상도 특징 맵에서 서로 다른 팽창 비율을 설정하고, 다중 단계 특징 정보가 함께 융합된다. 다중 척도 팽창 컨볼루션 특징 융합은 수용 영역을 확장함과 동시에 공간의 세부 정보를 잘 보존하고 팽창 컨볼루션의 효과성을 높임으로써 기존 모델보다 성능을 향상시킨다. 실험 결과를 통해 본 논문 제안한 네트워크 모델은 병렬 평창 컨볼루션 수가 증가함에 따라 성능이 향상되는 것을 알 수 있었다. 제안한 방법의 mIoU 값은 96.46%로 U-Net, FCN, PSPNet, ENet, LinkNet 등 기존 네트워크보다 높았다. 그리고 파라미터는 1,858K개로, 기존 LinkNet모델보다 6배로 축소하였다. Jetson Nano에서 실험 결과 보면, 제안한 방법의 FPS는 3.63로 실시간으로 블랙 아이스 영역을 실시간으로 분할 할 수 있었다.

다중 에이전트 강화학습 기반 특징 선택에 대한 연구 (Study for Feature Selection Based on Multi-Agent Reinforcement Learning)

  • 김민우;배진희;왕보현;임준식
    • 디지털융복합연구
    • /
    • 제19권12호
    • /
    • pp.347-352
    • /
    • 2021
  • 본 논문은 다중 에이전트 강화학습 방식을 사용하여 입력 데이터로부터 분류에 효과적인 특징 집합을 찾아내는 방식을 제안한다. 기계 학습 분야에 있어서 분류에 적합한 특징들을 찾아내는 것은 매우 중요하다. 데이터에는 수많은 특징들이 존재할 수 있으며, 여러 특징들 중 일부는 분류나 예측에 효과적일 수 있지만 다른 특징들은 잡음 역할을 함으로써 올바른 결과를 생성하는 데에 오히려 악영향을 줄 수 있다. 기계 학습 문제에서 분류나 예측 정확도를 높이기 위한 특징 선택은 매우 중요한 문제 중 하나이다. 이러한 문제를 해결하기 위해 강화학습을 통한 특징 선택 방법을 제시한다. 각각의 특징들은 하나의 에이전트를 가지게 되며, 이 에이전트들은 특징을 선택할 것인지 말 것인지에 대한 여부를 결정한다. 에이전트들에 의해 선택된 특징들과 선택되지 않은 특징들에 대해서 각각 보상을 구한 뒤, 보상에 대한 비교를 통해 에이전트의 Q-value 값을 업데이트 한다. 두 하위 집합에 대한 보상 비교는 에이전트로 하여금 자신의 행동이 옳은지에 대한 판단을 내릴 수 있도록 도와준다. 이러한 과정들을 에피소드 수만큼 반복한 뒤, 최종적으로 특징들을 선별한다. 이 방법을 통해 Wisconsin Breast Cancer, Spambase, Musk, Colon Cancer 데이터 세트에 적용한 결과, 각각 0.0385, 0.0904, 0.1252, 0.2055의 정확도 향상을 보여주었으며, 최종적으로 0.9789, 0.9311, 0.9691, 0.9474의 분류 정확도를 보여주었다. 이는 우리가 제안한 방법이 분류에 효과적인 특징들을 잘 선별하고 분류에 대한 정확도를 높일 수 있음을 보여준다.

특징점 매칭을 이용한 다중 차량 객체 검출 알고리즘 (A Multiple Vehicle Object Detection Algorithm Using Feature Point Matching)

  • 이경민;인치호
    • 한국ITS학회 논문지
    • /
    • 제17권1호
    • /
    • pp.123-128
    • /
    • 2018
  • 본 논문에서는 효율적인 차량 객체를 추적하는 특징점 매칭을 이용한 다중 차량 객체 검출 알고리즘을 제안한다. 제안하는 알고리즘은 효율적인 차량 객체 추적을 위해 FAST 알고리즘을 이용해서 차량의 특징점을 추출한다. 그리고 5X5 영역으로 분할 된 영상에서 특징점이 포함되면 True 포함되지 않으면 False로 해당 영역을 검은색으로 후처리하여 차량 객체을 제외한 불필요한 객체 정보를 제거한다. 그리고 후처리 된 영역을 차량의 최대 탐색창 크기로 설정하고, 차량의 최외각 특징점을 이용한 최소 탐색창을 설정하여 Mean-Shift 알고리즘의 탐색창 크기에 대한 단점을 보완하여 차량 객체 추적을 한다. 제안한 방법의 성능 평가하기위해 SIFT, SURF 알고리즘을 비교하여 실험한다. 그 결과 SIFT 알고리즘에 비해서 약 4배 빠르고 SUFR 알고리즘의 처리 과정 보다는 효율적으로 검출하는 장점이 있다.

HMM 인식기에서 상태별 다중 특징 파라미터 가중 (State-Dependent Weighting of Multiple Feature Parameters in HMM Recognizer)

  • 손종목;배건성
    • 한국음향학회지
    • /
    • 제18권4호
    • /
    • pp.47-52
    • /
    • 1999
  • 본 논문에서는 특징 파라미터의 분산과 인식성능에 대한 기여도를 고려하여 각 특징 파라미터를 가중시키는 방법을 제안하였다. 각 특징 파라미터의 인식률에 비례하게 전체 기여도를 설정하고, 각 특징 파라미터의 분산에 따라 가중요인을 설정하였다. 전체 기여도와 분산에 따른 가중요인을 사용하여 각 특징 파라미터의 상태별 가중치를 설정하였다. 제안한 방법의 유효성을 살펴보기 위해 유사음소 단위의 HMM 음성인식시스템을 사용하여 인식실험을 하였다. 인식실험에서 제안한 방법으로 가중치를 설정하였을 경우에 인식률이 7.7% 향상됨을 볼 수 있었다.

  • PDF

보배 견문모 광상에서 산출하는 녹염석의 누대구조의 특징과 발달과정 (Mineralogical Characteristics and Formation Processes of Zonal Textures in Hydrothermal Epidote from the Bobae Sericite Deposit)

  • 추창오
    • 자원환경지질
    • /
    • 제34권5호
    • /
    • pp.437-446
    • /
    • 2001
  • 부산 보배견운모 광상의 프로필리틱 열수변질대에서 형성된 녹염석은 다양한 누대구조를 수반하는데, 다중결정성장 누대구조, 진동누대구조, patchy누대구조 및 강도가 약한 불규칙한 누대구조가 특징적이다. 누대구조는 주로 열수용 액의 AI Fe의 활동도에 좌우되며, 전반적으로 결정의 중심부에서는 AI, 가장자리에서는 Fe의 함량이 높다. 녹염석 의 Ps는 18.5-34.3 mot.% 범위이다. 여러 결정이 중첩하여 형성된 누대구조에서는 잔류조직이 부분적으로 흡수용해 되었으며, 이후에 결정들이 새로 성장하였다. 다중결정성장 누대구조나 진동누대구조는 열수시스템의 유체의 화학조성, 산화환원전위, 온도 등과 같은 물리화학적 변수들이 급격하게 변동하였음 지시한다

  • PDF

미국 주파수 경매의 경제학적 특성

  • 윤충한
    • 한국전자파학회지:전자파기술
    • /
    • 제17권3호
    • /
    • pp.63-73
    • /
    • 2006
  • 경매는 자원을 가장 필요로 하는 이용자에게 합리적으로 배분하도록 고안된 제도이며, 여러 국가에서는 최근 주파수 자원의 배분에 도입하고 있다. 본 고에서는 주파수 경매가 가장 활발한 미국의 경우에 대해 설명한다. 미국의 경우, 여러 주파수 면허를 동시에 다중 라운드로 경매함으로써 경쟁자가 이전 라운드에 입찰한 가격에 대한 정보를 얻을 수 있게 하는 제도인 '동시 다중 라운드 경매'를 특징으로 한다. 이 제도하의 입찰 참여자는 이전 라운드의 정보를 기초로 유연하게 전략수정이 가능하며, 여러 주파수 면허들 간에 치적의 시너지 가치를 입찰자 각자가 결정할 수 있다. 이러한 제도적 특징으로 입찰이 활성화될 수 있었고 담합은 최소한으로 억제될 수 있었다. 이러한 동시 다중 라운드 방식은 미국의 성공을 기반으로 유럽의 3G 주파수 경매에서도 보편적으로 사용되어 가장 일반화된 주파수 경매 방식으로 받아들여지고 있다.

행렬 분해 제약을 사용한 다중 영상에서의 투영 복원 (Projective Reconstruction from Multiple Images using Matrix Decomposition Constraints)

  • 안호영;박종승
    • 한국멀티미디어학회논문지
    • /
    • 제15권6호
    • /
    • pp.770-783
    • /
    • 2012
  • 본 논문에서는 다중 영상에서 추출된 특징점을 사용해서 투영 공간에서의 카메라 행렬과 3차원 정점좌표를 계산하는 방법을 제안한다. 수치적인 안정성을 위해서 특징점을 정규화한 후 복원하며 얻어지는 카메라 행렬과 3차원 정점에 대해서 비정규화한다. 카메라 행렬과 3차원 정점의 초기값을 얻기 위해서 특이값 분해기법을 사용해서 투영 깊이가 적용된 측정 행렬을 분해한다. 행렬 분해 제약을 사용하여 카메라 행렬과 3차원 정점을 투영 복원한다. 투영 복원 과정에서는 비선형 반복적 최적화 방법이 사용된다. 실험 결과 제안방법은 대체로 적절한 정확성을 얻었고 오차의 편차가 크지 않았다.

다중 클래스 아다부스트를 이용한 엘리베이터 내 군집 밀도 추정 (Crowd Density Estimation with Multi-class Adaboost in elevator)

  • 김대훈;이영현;구본화;고한석
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권7호
    • /
    • pp.45-52
    • /
    • 2012
  • 본 논문에서는 다중 클래스 아다부스트 기반의 분류기를 이용하여 엘리베이터 내 군집 밀도를 추정하는 방법을 제안한다. SOM을 사용하는 기존의 방법은 재현성이 떨어지며 충분한 성능을 내지 못한다. 제안한 방법은 GLDM(Grey-Level Dependency Matrix)과 GGDM(Grey-Gradient Dependency Matrix)의 텍스처 특징과 다중 클래스 아다부스트 기반의 분류기를 통해 실내 군집 밀도를 추정한다. 다중 클래스를 분류하기 위해 기존의 아다부스트 알고리즘에서 웨이트 업데이트 식을 변형하여 더 높은 성능의 약한 분류기를 생성하도록 하였다. 군집 밀도는 인원수에 따라 0명, 1~2명, 3~4명, 5명 이상 등 네 가지 클래스로 구분하였다. 엘리베이터 내 영상을 이용한 모의 실험 결과 제안된 방법은 기존의 방법보다 약 20% 정도의 검출률 향상을 나타내었다.