• Title/Summary/Keyword: 다중코어

Search Result 160, Processing Time 0.03 seconds

Multi-Channel Analog Front-End for Auditory Nerve Signal Detection (청각신경신호 검출 장치용 다중채널 아나로그 프론트엔드)

  • Cheon, Ji-Min;Lim, Seung-Hyun;Lee, Dong-Myung;Chang, Eun-Soo;Han, Gun-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.1
    • /
    • pp.60-68
    • /
    • 2010
  • In case of sensorineural hearing loss, auditory perception can be activated by electrical stimulation of the nervous system via electrode implanted into the cochlea or auditory nerve. Since the tonotopic map of the human auditory nerve has not been definitively identified, the recording of auditory nerve signal with microelectrode is desirable for determining the tonotopic map. This paper proposes the multi-channel analog front-end for auditory nerve signal detection. A channel of the proposed analog front-end consists of an AC coupling circuit, a low-power 4th-order Gm-C LPF, and a single-slope ADC. The AC coupling circuit transfers only AC signal while it blocks DC signal level. Considering the bandwidth of the auditory signal, the Gm-C LPF is designed with OTAs adopting floating-gate technique. For the channel-parallel ADC structure, the single-slope ADC is used because it occupies the small silicon area. Experimental results shows that the AC coupling circuit and LPF have the bandwidth of 100 Hz - 6.95 kHz and the ADC has the effective resolution of 7.7 bits. The power consumption per a channel is $12\;{\mu}W$, the power supply is 3.0 V, and the core area is $2.6\;mm\;{\times}\;3.7\;mm$. The proposed analog front-end was fabricated in a 1-poly 4-metal $0.35-{\mu}m$ CMOS process.

Spectral Induced Polarization Characteristics of Rocks in Gwanin Vanadiferous Titanomagnetite (VTM) Deposit (관인 함바나듐 티탄철광상 암석의 광대역 유도분극 특성)

  • Shin, Seungwook
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.194-201
    • /
    • 2021
  • Induced polarization (IP) effect is known to be caused by electrochemical phenomena at interface between minerals and pore water. Spectral induced polarization (SIP) method is an electrical survey to localize subsurface IP anomalies while injecting alternating currents of multiple frequencies into the ground. This method was effectively applied to mineral exploration of various ore deposits. Titanomagnetite ores were being produced by a mining company located in Gonamsan area, Gwanin-myeon, Pocheon-si, Gyeonggi-do, South Korea. Because the ores contain more than 0.4 w% vanadium, the ore deposit is called as Gwanin vanadiferous titanomagnetite (VTM) deposit. The vanadium is the most important of materials in production of vanadium redox flow batteries, which can be appropriately used for large-scale energy storage system. Systematic mineral exploration was conducted to identify presence of hidden VTM orebodies and estimate their potential resources. In geophysical exploration, laboratory geophysical measurement of rock samples is helpful to generate reliable property models from field survey data. Therefore, we performed laboratory SIP data of the rocks from the Gwanin VTM deposit to understand SIP characteristics between ores and host rocks and then demonstrate the applicability of this method for the mineral exploration. Both phase and resistivity spectra of the ores sampled from underground outcrop and drilling cores were different of those of the host rocks consisting of monzodiorite and quartz monzodiorite. Because the phase and resistivity at frequencies below 100 Hz are mainly dependent on the SIP characteristics of the rocks, we calculated mean values of the ores and the host rocks. The average phase values at 0.1 Hz were ores: -369 mrad and host rocks: -39 mrad. The average resistivity values at 0.1 Hz were ores: 16 Ωm and host rocks: 2,623 Ωm. Because the SIP characteristics of the ores were different of those of the host rocks, we considered that the SIP survey is effective for the mineral exploration in vanadiferous titanomagnetite deposits and the SIP characteristics are useful for interpreting field survey data.

A Study on Multi-modal Near-IR Face and Iris Recognition on Mobile Phones (휴대폰 환경에서의 근적외선 얼굴 및 홍채 다중 인식 연구)

  • Park, Kang-Ryoung;Han, Song-Yi;Kang, Byung-Jun;Park, So-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • As the security requirements of mobile phones have been increasing, there have been extensive researches using one biometric feature (e.g., an iris, a fingerprint, or a face image) for authentication. Due to the limitation of uni-modal biometrics, we propose a method that combines face and iris images in order to improve accuracy in mobile environments. This paper presents four advantages and contributions over previous research. First, in order to capture both face and iris image at fast speed and simultaneously, we use a built-in conventional mega pixel camera in mobile phone, which is revised to capture the NIR (Near-InfraRed) face and iris image. Second, in order to increase the authentication accuracy of face and iris, we propose a score level fusion method based on SVM (Support Vector Machine). Third, to reduce the classification complexities of SVM and intra-variation of face and iris data, we normalize the input face and iris data, respectively. For face, a NIR illuminator and NIR passing filter on camera are used to reduce the illumination variance caused by environmental visible lighting and the consequent saturated region in face by the NIR illuminator is normalized by low processing logarithmic algorithm considering mobile phone. For iris, image transform into polar coordinate and iris code shifting are used for obtaining robust identification accuracy irrespective of image capturing condition. Fourth, to increase the processing speed on mobile phone, we use integer based face and iris authentication algorithms. Experimental results were tested with face and iris images by mega-pixel camera of mobile phone. It showed that the authentication accuracy using SVM was better than those of uni-modal (face or iris), SUM, MAX, NIN and weighted SUM rules.

A Study on the Utilization and Control Method of Hybrid Switching Tap Based Automatic Voltage Regulator on Smart Grid (스마트그리드의 탭 전환 자동 전압 조정기의 다중 스위칭 제어 방법 및 활용 방안에 관한 연구)

  • Park, Gwang-Yun;Kim, Jung-Ryul;Kim, Byung-Gi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.31-39
    • /
    • 2012
  • In this paper, we propose a microprocessor-based automatic voltage regulator(AVR) to reduce consumers' electric energy consumption and to help controlling peak demanding power. Hybrid Switching Automatic Voltage Regulator (HS-AVR) consist of a toroidal core, several tap control switches, display and command control parts. The coil forms an autotransformer which has a serial main winding and four parallel auxiliary windings. It controls the output voltage by changing the combination of the coils and the switches. Relays are adopted as the link switches of the coils to minimize the loss. To make connecting and disconnecting time accurate, relays of the circuit have parallel TRIACs. A software phase locked loop(PLL) has been used to synchronize the timings of the switches to the voltage waveform. The software PLL informs the input voltage zero-crossing and positive/negative peak timing. The traditional voltage transformers and AVRs have a disadvantage of having a large mandatory capacity to accommodate maximum inrush current to avoid the switch contact damage. But we propose a suitable AVR for every purpose in smart grid with reduced size and increased efficiency.

Properties of Blocking Filter as a function fo Magnetic Core shapes for Power Line Communication (자심재료의 형상에 따른 전력선 통신용 블로킹 필터의 특성)

  • Kim, Hyun-Sik;Lee, Hae-Yon;Ji, Min-Kwon;Oh, Young-Woo;Byun, Woo-Bong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.230-230
    • /
    • 2007
  • 전력선 통신(Power Line Communication)은 최근 전력선을 이용한 통신기술의 발달과 더불어 세계적으로 관심도가 높아지고 연구 개발 및 자본 투자가 활발히 진행되고 있으며, 안정적인 네트워크를 구성하기 위해서는 고주파 전력선 통신 신호를 차단하는 블로킹 필터가 반드시 적용되어야 한다. 전력선 통신용 블로킹 필터는 광대역의 주파수 특성과 높은 신호감쇄 특성 및 대전류 특성이 요구되며, 이러한 특성을 구현하기 위해서는 블로킹 필터의 핵심부품인 자심재료의 고투자율 및 대전류화가 이루어져야 한다. 따라서 본 연구에서는 우수한 전 자기적 특성이 균일하게 유지되고, 전력선에 흐르는 대전류에 의한 자심재료의 포화가 발생하지 않도륵 새로운 자심 재료를 설계하여, 전력선 통신을 적용한 홈 네트워크 구축의 핵심 부품인 광대역 블로킹 필터를 개발하고자 하였다. 2350과 0.3 T의 투자율과 포화자속 밀도를 갖는 EI 형상의 자심재료를 해석모델로 설정하고 다중 에어 갭의 위치에 따른 전류와 자속밀도 변화를 유한요소 해석법으로 분석한 결과 자심재료의 대전류 특성에 지배적인 영향을 미치는 에어 캡의 삽입 위치를 알 수 있었고, 새로운 해석 모델인 I 형상의 로드(ROD) 코어에 대해 수치해석을 수행하여, 100A의 통전 전류에서도 자기적으로 포화되지 않고 인덕턴스의 정밀 제어가 가능하고, 특성의 신뢰성과 대전류에 대한 안정성을 증가시킬 수 있는 인덕터를 설계하였다. 또한 수동소자를 이용한 LC 공진회로를 기본 구성으로 하고, 주파수 대역, 신호 감쇄율과 대전류 특성, 상용화를 고려하여 블로킹 필터 회로를 설계하였으며, 유한요소해석법을 적용한 전자장 모의해석을 통하여 최소의 크기를 갖는 I 형상의 자심재료에 $6{\Phi}$의 에나멜 동선을 6.5턴, 6턴 권선하여 2.5, $2.15\;{\mu}H$의 인덕턴스를 갖는 직렬 인덕터를 구현하였고 블로킹 필터를 구성하였다. 주파수에 따른 신호감쇄 특성을 5 Hz~1 MHz의 주파수 범위에서 측정한 결과 약 490 kHz~450 kHz의 주파수 대역에서 -70dB의 신호감쇄 특성을 나타냈다. 본 연구를 통해 개발된 100A급 광대역 블로킹 필터가 적용되어 상용화 될 수 있을 것으로 판단되며, 또한 모뎀 통신 주파수 대역에서 -70dB 이상의 높은 감쇄 특성을 갖기 때문에 신호차단 특성이 보다 우수할 것으로 사료된다.

  • PDF

IBN-based: AI-driven Multi-Domain e2e Network Orchestration Approach (IBN 기반: AI 기반 멀티 도메인 네트워크 슬라이싱 접근법)

  • Khan, Talha Ahmed;Muhammad, Afaq;Abbas, Khizar;Song, Wang-Cheol
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.29-41
    • /
    • 2020
  • Networks are growing faster than ever before causing a multi-domain complexity. The diversity, variety and dynamic nature of network traffic and services require enhanced orchestration and management approaches. While many standard orchestrators and network operators are resulting in an increase of complexity for handling E2E slice orchestration. Besides, there are multiple domains involved in E2E slice orchestration including access, edge, transport and core network each having their specific challenges. Hence, handling of multi-domain, multi-platform and multi-operator based networking environments manually requires specified experts and using this approach it is impossible to handle the dynamic changes in the network at runtime. Also, the manual approaches towards handling such complexity is always error-prone and tedious. Hence, this work proposes an automated and abstracted solution for handling E2E slice orchestration using an intent-based approach. It abstracts the domains from the operators and enable them to provide their orchestration intention in the form of high-level intents. Besides, it actively monitors the orchestrated resources and based on current monitoring stats using the machine learning it predicts future utilization of resources for updating the system states. Resulting in a closed-loop automated E2E network orchestration and management system.

Assessment for the Utility of Treatment Plan QA System according to Dosimetric Leaf Gap in Multileaf Collimator (다엽콜리메이터의 선량학적엽간격에 따른 치료계획 정도관리시스템의 효용성 평가)

  • Lee, Soon Sung;Choi, Sang Hyoun;Min, Chul Kee;Kim, Woo Chul;Ji, Young Hoon;Park, Seungwoo;Jung, Haijo;Kim, Mi-Sook;Yoo, Hyung Jun;Kim, Kum Bae
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.168-177
    • /
    • 2015
  • For evaluating the treatment planning accurately, the quality assurance for treatment planning is recommended when patients were treated with IMRT which is complex and delicate. To realize this purpose, treatment plan quality assurance software can be used to verify the delivered dose accurately before and after of treatment. The purpose of this study is to evaluate the accuracy of treatment plan quality assurance software for each IMRT plan according to MLC DLG (dosimetric leaf gap). Novalis Tx with a built-in HD120 MLC was used in this study to acquire the MLC dynalog file be imported in MobiusFx. To establish IMRT plan, Eclipse RTP system was used and target and organ structures (multi-target, mock prostate, mock head/neck, C-shape case) were contoured in I'mRT phantom. To verify the difference of dose distribution according to DLG, MLC dynalog files were imported to MobiusFx software and changed the DLG (0.5, 0.7, 1.0, 1.3, 1.6 mm) values in MobiusFx. For evaluation dose, dose distribution was evaluated by using 3D gamma index for the gamma criteria 3% and distance to agreement 3 mm, and the point dose was acquired by using the CC13 ionization chamber in isocenter of I'mRT phantom. In the result for point dose, the mock head/neck and multi-target had difference about 4% and 3% in DLG 0.5 and 0.7 mm respectively, and the other DLGs had difference less than 3%. The gamma index passing-rate of mock head/neck were below 81% for PTV and cord, and multi-target were below 30% for center and superior target in DLGs 0.5, 0.7 mm, however, inferior target of multi-target case and parotid of mock head/neck case had 100.0% passing rate in all DLGs. The point dose of mock prostate showed difference below 3.0% in all DLGs, however, the passing rate of PTV were below 95% in 0.5, 0.7 mm DLGs, and the other DLGs were above 98%. The rectum and bladder had 100.0% passing rate in all DLGs. As the difference of point dose in C-shape were 3~9% except for 1.3 mm DLG, the passing rate of PTV in 1.0 1.3 mm were 96.7, 93.0% respectively. However, passing rate of the other DLGs were below 86% and core was 100.0% passing rate in all DLGs. In this study, we verified that the accuracy of treatment planning QA system can be affected by DLG values. For precise quality assurance for treatment technique using the MLC motion like IMRT and VMAT, we should use appropriate DLG value in linear accelerator and RTP system.

Polymerization of dual cured composites by different thickness (두께에 따른 이중 중합형 복합레진의 중합)

  • Kim, Yun-Ju;Jin, Myoung-Uk;Kim, Sung-Kyo;Kwon, Tae-Yub;Kim, Young-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.169-176
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of thickness, filling methods and curing methods on the polymerization of dual cured core materials by means of microhardness test. Two dual cured core materials, MultiCore Flow (Ivoclar Vivadent AG, Schaan, Liechtenstein) and Bis-Core (Bisco Inc., Schaumburg, IL, USA) were used in this study. 2 mm (bulky filled), 4 mm (bulky filled), 6 mm (bulky and incrementally filled) and 8 mm (bulky and incrementally filled)-thickness specimens were prepared with light cure or self cure mode. After storage at $37{\circ}C$ for 24 hours, the Knoop hardness values (KHN) of top and bottom surfaces were measured and the microhardness ratio of top and bottom surfaces was calculated. The data were analyzed using one-way ANOVA and Scheffe multiple comparison test, with ${\alpha}$= 0.05. The effect of thickness on the polymerization of dual cured composites showed material specific results. In 2, 4 and 6 mm groups, the KHN of two materials were not affected by thickness. However, in 8 mm group of MultiCore Flow, the KHN of the bottom surface was lower than those of other groups (p < 0.05). The effect of filling methods on the polymerization of dual cured composites was different by their thickness or materials. In 6 mm thickness, there was no significant difference between bulk and incremental filling groups. In 8 mm thickness, Bis-Core showed no significant difference between groups. However, in MultiCore Flow, the microhardness ratio of bulk filling group was lower than that of incremental filling group (p < 0.05). The effect of curing methods on the polymerization of dual cured composites showed material specific results. In Bis-Core, the KHN of dual cured group were higher than those of self cured group at both surfaces (p < 0.05). However, in MultiCore Flow, the results were not similar at both surfaces. At the top surface, dual cured group showed higher KHN than that of self cured group (p < 0.05). However, in the bottom surface, dual cured group showed lower value than that of self cured group (p < 0.05).

Performance Optimization of Numerical Ocean Modeling on Cloud Systems (클라우드 시스템에서 해양수치모델 성능 최적화)

  • JUNG, KWANGWOOG;CHO, YANG-KI;TAK, YONG-JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.3
    • /
    • pp.127-143
    • /
    • 2022
  • Recently, many attempts to run numerical ocean models in cloud computing environments have been tried actively. A cloud computing environment can be an effective means to implement numerical ocean models requiring a large-scale resource or quickly preparing modeling environment for global or large-scale grids. Many commercial and private cloud computing systems provide technologies such as virtualization, high-performance CPUs and instances, ether-net based high-performance-networking, and remote direct memory access for High Performance Computing (HPC). These new features facilitate ocean modeling experimentation on commercial cloud computing systems. Many scientists and engineers expect cloud computing to become mainstream in the near future. Analysis of the performance and features of commercial cloud services for numerical modeling is essential in order to select appropriate systems as this can help to minimize execution time and the amount of resources utilized. The effect of cache memory is large in the processing structure of the ocean numerical model, which processes input/output of data in a multidimensional array structure, and the speed of the network is important due to the communication characteristics through which a large amount of data moves. In this study, the performance of the Regional Ocean Modeling System (ROMS), the High Performance Linpack (HPL) benchmarking software package, and STREAM, the memory benchmark were evaluated and compared on commercial cloud systems to provide information for the transition of other ocean models into cloud computing. Through analysis of actual performance data and configuration settings obtained from virtualization-based commercial clouds, we evaluated the efficiency of the computer resources for the various model grid sizes in the virtualization-based cloud systems. We found that cache hierarchy and capacity are crucial in the performance of ROMS using huge memory. The memory latency time is also important in the performance. Increasing the number of cores to reduce the running time for numerical modeling is more effective with large grid sizes than with small grid sizes. Our analysis results will be helpful as a reference for constructing the best computing system in the cloud to minimize time and cost for numerical ocean modeling.

Polymerization of dual cured composites by different thickness (두께에 따른 이중 중합형 복합레진의 중합)

  • Kim, Yun-Ju;Jin, Myoung-Uk;Kim, Sung-Kyo;Kwon, Tae-Yub;Kim, Young-Kyung
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.169-176
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of thickness, filling methods and curing methods on the polymerization of dual cured core materials by means of microhardness test. Two dual cured core materials, MultiCore Flow (Ivoclar Vivadent AG, Schaan, Liechtenstein) and Bis-Core (Bisco Inc., Schaumburg, IL, USA) were used in this study. 2 mm (bulky filled), 4 mm (bulky filled), 6 mm (bulky and incrementally filled) and 8 mm (bulky and incrementally filled)-thickness specimens were prepared with light cure or self cure mode. After storage at $37^{\circ}C$ for 24 hours, the Knoop hardness values (KHN) of top and bottom surfaces were measured and the microhardness ratio of top and bottom surfaces was calculated. The data were analyzed using one-way ANOVA and Scheffe multiple comparison test, with ${\alpha}=0.05$. The effect of thickness on the polymerization of dual cured composites showed material specific results. In 2, 4 and 6 mm groups, the KHN of two materials were not affected by thickness. However, in 8 mm group of MultiCore Flow, the KHN of the bottom surface was lower than those of other groups (p < 0.05). The effect of filling methods on the polymerization of dual cured composites was different by their thickness or materials. In 6 mm thickness, there was no significant difference between bulk and incremental filling groups. In 8 mm thickness, Bis-Core showed no significant difference between groups. However, in MultiCore Flow, the microhardness ratio of bulk filling group was lower than that of incremental filling group (p < 0.05). The effect of curing methods on the polymerization of dual cured composites showed material specific results. In Bis-Core, the KHN of dual cured group were higher than those of self cured group at both surfaces (p < 0.05). However, in MultiCore Flow, the results were not similar at both surfaces. At the top surface, dual cured group showed higher KHN than that of self cured group (p < 0.05). However, in the bottom surface, dual cured group showed lower value than that of self cured group (p < 0.05).

  • PDF