• Title/Summary/Keyword: 다중진동모드

Search Result 67, Processing Time 0.02 seconds

Free Vibration Characteristics of a Composite Beam with Multiple Transverse Open Cracks (다중 크랙이 있는 복합재료 보의 자유진동 특성)

  • 하태완;송오섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.5-14
    • /
    • 1999
  • Free vibration characteristics of a cantilevered laminated composite beam with multiple non-propagating transverse open cracks are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The multiple open cracks are modelled as equivalent rotational springs whose spring constants are calculated based on the fracture mechanics of composite material structures. Governing equations of a composite beam with open cracks are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect is adopted. The effects of various parameters such as the ply angle, fiber volume fraction, crack numbers, crack positions and crack depthes on the free vibration characteristics of the beam with multiple cracks are highlighted. The numerical results show that the existence of the multiple cracks in an anisotropic composite beam affects the free vibration characteristics in a more complex fashion compared with the beam with a single crack.

  • PDF

Multi-mode Noise Reduction of Smart Panels Using Piezoelectric Shunt Damping (압전션트 댐핑을 이용한 지능패널의 다중 모드 소음 저감)

  • 김준형;김재환
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.300-307
    • /
    • 2003
  • This paper presents the multi-mode noise reduction of smart panels of which passive piezoelectric shunt damping is introduced. For the piezoelectric shunt damping, a passive shunt circuit composed of inductors and a load resistor is connected to the piezoelectric patch mounted on the panel structure. An electrical impedance model is introduced for the system based on the measured electrical impedance, and the criteria for maximum energy dissipation at the shunt circuit is used to find the optimal shunt parameters. For multi-mode shunt damping, the shunt circuit is modified by the introduction of a block circuit. Also the optimal location of the piezoelectric patch is studied by finite element analysis in order to cause the maximum admittance from the patch for each mode of the structure. An acoustic test is performed for the panels and a remarkable noise reduction is obtained in multiple modes of the panel structure.

Displacement Measurement of Multi-Point Using a Pattern Recognition from Video Signal (영상 신호에서 패턴인식을 이용한 다중 포인트 변위측정)

  • Jeon, Hyeong-Seop;Choi, Young-Chul;Park, Jong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.675-680
    • /
    • 2008
  • This paper proposes a way to measure the displacement of a multi-point by using a pattern recognition from video signal. Generally in measuring displacement, gab sensor, which is a displacement sensor, is used. However, it is difficult to measure displacement by using a common sensor in places where it is unsuitable to attach a sensor, such as high-temperature areas or radioactive places. In this kind of places, non-contact methods should be used to measure displacement and in this study, images of CCD camera were used. When displacement is measure by using camera images, it is possible to measure displacement with a non-contact method. It is simple to install and multi-point displacement measuring device so that it is advantageous to solve problems of spatial constraints.

  • PDF

Multi-mode noise reduction of using piezoelectric shunt damping smart panels (압전션트를 이용한 패널의 다중 모드 소음 저감에 관한 연구)

  • Kim, Joon-Hyoung;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.216-221
    • /
    • 2002
  • In this paper, the transmitted noise reduction of smart panels of which passive piezoelectric shunt damping is used, is experimentally studied. Shunt damping experiments are based on the measured electrical impedance model. A passive shunt circuit composed of inductors, and a load resistor is devised to dissipate the maximum energy into the joule heat energy. For multi-mode shunt damping, the shunt circuit is redesigned by adding a blocking circuit. Also the optimal location of the piezoelectric patch is studied by FEM in order to cause the maximum admittance from the patch for each mode of aluminum plate. In results, the transmitted sound pressure level of panels is efficiently reduced for multi-modes

  • PDF

Study of the Non-linearity of Cable Damper to Enhance Damping Performance of Stay Cable (사장교 케이블의 감쇠성능 향상을 위한 댐퍼의 비선형성 연구)

  • Seo, Ju-Won;Koh, Hyun-Moo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.785-796
    • /
    • 2007
  • This study offers a design procedure of optimum cable damper for multi-mode vibration control with nonlinear damper and also investigates the relation between mode and amplitude dependency. The proposed multi-mode damping index, which is defined as a potential energy loss ratio of cable vibration, is a main component of optimization problem of optimum nonlinear damper. In order to include the amplitude dependency of nonlinear damper, three types of multi-mode patterns such as ambient vibration, support excitation and rain-wind induced vibration are assumed. The optimum damper exponent depends on amplitude patterns. In case of ambient vibration, optimum factor is less than 0.5 and in case of support excitation or rain-wind induced vibration it is between 0.5 and 1.0.

Finite Element and Experimental Modal Analyses of Multiple Thin-Disked Flexible Spindle Systems (다중 박 원판을 갖는 유연 회전축계의 유한 요소 및 실험적 모드 해석)

  • 임승철;제인주
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1029-1035
    • /
    • 1999
  • This paper relates to the flexural vibration analysis of slender spindle systems with multiple thin disks, supported by the ball bearings by means of the finite element method. Each system component is analytically modeled taking into account its flexibility and also the centrifugal effect especially for the disk. In order to show the rapid convergence rate and accuracy of the proposed approach, an experimental set-up is built to be versatile. In two distinct cases, its natural modes are numerically computed using only a small number of total element meshes as the shaft rotational speed is varied, and verified through experimental frequency response function obtained by the impact test.

  • PDF

The study on the multi-mode muffler by intelligent control for low noise and low backpressure (저소음 저배압을 위한 다중모드 지능제어 배기계에 관한 연구 -음향관 모델의 모델차수 결정방법-)

  • 손동구;김흥섭;오재응
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.142-147
    • /
    • 1996
  • For prediction and control of sound, acoustic systems must be modeled. Because sound systems like exhaust systems are very difficult to calculate mathematically, this study presents a method to determine experimentally the order of poles by transfer function. When designing a control system by traditional methods the exact model order and coefficient of the system to be controlled must be determined. But in acoustic systems, where systems to be controlled are very complex, mathematical interpretation is almost always impossible. Therefore transversal filters using trial and error methods to determine model order of a system are used to design a system. Compared to mathematical models with poles, transversal filters, in which the model order becomes relatively large, have the disadvantage of prolonged processing time and marked time delay. This study presents a method to determine experimentally the order of poles in a system model with poles and zeroes. Also, the validity of this method was verified mathematically and confirmed by application in general simple models and acoustic tube simulators.

  • PDF

Displacement Measurement of Multi-point Using a Pattern Recognition from Video Signal (영상 신호에서 패턴인식을 이용한 다중 포인트 변위측정)

  • Jeon, Hyeong-Seop;Choi, Young-Chul;Park, Jong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1256-1261
    • /
    • 2008
  • This paper proposes a way to measure the displacement of a multi-point by using a pattern recognition from video signal. Generally in measuring displacement, gab sensor, which is a displacement sensor, is used. However, it is difficult to measure displacement by using a common sensor in places where it is unsuitable to attach a sensor, such as high-temperature areas or radioactive places. In this kind of places, non-contact methods should be used to measure displacement and in this study, images of CCD camera were used. When multi-point is measure by using a pattern recognition, it is possible to measure displacement with a non-contact method. It is simple to install and multi-point displacement measuring device so that it is advantageous to solve problems of spatial constraints.

On the Free Vibration Analysis of Thin-Walled Box Beams having Variable Cross-Sections (단면형상이 변하는 박판보의 진동해석에 관한 연구)

  • Lee, Gi-Jun;Sa, Jin-Yong;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.111-117
    • /
    • 2017
  • In this paper, a local deformation effect in thin-walled box beams is investigated via a finite element modal analysis. The analysis is carried out for single-cell and multi-cell box beam configurations. The single-cell box beam with and without a neck, which mimics a simple wind-turbine blade, is analyzed first. The results obtained by shell elements are compared to those of one-dimensional(1D) beam elements. It is observed that the wall thickness plays a crucial role in the natural frequencies of the beam. The 1D beam analysis deviates from the shell analysis when the wall thickness is either thin or thick. The shell modes(local deformations) are dominant as it becomes thin, whereas the shear deformation effects are significant as it does thick. The analysis is extended to the single-cell box beam with a neck, in which the shell modes are confined to near the neck. Finally the multi-cell box beam with a taper, which is quite similar to real wind-turbine blade configuration, is considered to investigate the local deformation effect. The results reveal that the 1D beam analysis cannot match with the shell analysis due to the local deformation, especially for the lagwise frequencies. There are approximately 5~7% errors even if the number of segments is increased.

Development of Auto-Masking Puretone Audiometer supporting Multiple Modes (다중모드 지원 자동차폐 순음청력검사 시스템 개발)

  • Kim, Jin-Dong;Shin, Bum-Joo;Jeon, Gye-Rok;Wang, Soo-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1229-1236
    • /
    • 2009
  • Puretone audiometer, which is a machine used for measuring the minimum hearing threshold, can be cost-effectively implemented using computer with sound card and software. In this paper, we describe a puretone audiometer which has been designed and implemented based on a general PC with sound card. It supports air conduction and bone conduction test taking with automatic masking. It also provides multiple modes consisted of self-test, auto-test and manual test mode. Such multiple modes makes it possible to use in various environments like as home and/or hospital. Through measure of waveform of output voltage and sound pressure, we verified that puretone audiometer of this paper properly operates.