• Title/Summary/Keyword: 다중진동모드

Search Result 67, Processing Time 0.026 seconds

Application of Seismic Analysis and Design Method on the Bridges by Spectral Analysis Method (스펙트럼해석법에 의한 교량의 지진해석 및 설계방법의 적용)

  • 김운학;유영화;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.17-29
    • /
    • 1997
  • Single-mode spectral analysis method is usually applied to a small-scale bridges with the simple geometric shape and uses only fundamental period to estimate the elastic earthquake forces and the displacements of the substructure. On the other hand, multi-mode spectral analysis method may be used instead if the possibilities of potential damage are developed when considering significance, scale, and geometric shape of briages. Since the dynamic responses of bridge can be significantly different depending on the modeling techniques for the restraint and support conditions etc, it may be misled to the unexpected results. In this study the dynamic analysis program which can model and analyze the bridge as a two- or three-dimensional framed structure is developed and verified with the results of other reliable program. Using this program together with the post processor, the designer can easily and readily obtain the reponses(moments, base shears, and displacements)of bridges necessary to design purpose. And further from the analysis results according to the variations of type, scale, and restraint and supprot conditions of bridges including sectional properties, applications of the effective and desirable seismic design are presented.

  • PDF

Active Vibration Control of Multi-Mode Forced Vibration Using PPF Control Technique (PPF 제어기법을 이용한 다중 모드 강제 진동의 능동 진동 제어)

  • 한상보;곽문규;윤신일
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.1007-1013
    • /
    • 1997
  • This paper presents active vibration control scheme of multi-mode forced vibration using piezocetamic sensors and actuators. The control scheme adopted is the Positive Position Feedback (PPF) control. Among various vibration control techniques. PPF control technique makes use of generalized displacement measurements to accomplish the vibration suppression. Two independent controllers are implemented to control the first and the second modes of the beam under external excitation. Experimental results for various damping ratios and feedback gains of the PPF controllers are compared with respect to the contorl efficiency. The results indicate that steady state vibration under wide band excitation can be controlled effectively when multiple sets of PZT sensors and actuators were used with PPF control technique.

  • PDF

Engine Mounting System Optimization for Improve NVH (NVH 향상을 위한 엔진 설치 시스템 최적화)

  • Kim, Jang-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4665-4671
    • /
    • 2013
  • Engine mounting system is the most responsible system for NVH performance of vehicle. The vibration at idle shake, road shake, Key ON/OFF, gear shift tuned by the engine mount position and stiffness. Previously described Engine mounting system theory investigated and summarized in this paper. Decoupling of the Power train rigid mode and Reducing the angle between Torque-Roll-Axis and Elastic-roll-Axis is starting point of optimization. Multi-optimization analysis was performed because of variety simulation case and FE-model. Eventually, Find the best mount location and the stiffness has improved the performance of the vehicle NVH.

Damage quantification of shear buildings using deflections obtained by modal flexibility (모드유연도 행렬 변위를 이용한 전단빌딩의 정량적 손상평가 방법)

  • Sung, Seung-Hun;Koo, Ki-Young;Jung, Hyung-Jo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.44-47
    • /
    • 2011
  • 본 논문에서는 상사진동에서의 응답을 통해 구성된 모드유연도 행렬에 의해 추정되는 변위/변형을 이용해 전당빌딩의 손상을 정량적으로 평가하는 방법을 제시하였다. 제안된 방법은 전단빌딩의 손살발생 후의 층간변위와 손상발생 전 후의 층간변위 차이인 Damage-induced inter-story deflection(DI-ID)의 관계를 이용해 손상을 정량적으로 평가하는 방법이다. 구조물이 양전단력만을 발생시킴으로써 층간변위를 분명히 파악할 수 있도록 하는 양전단력 탐색하중(Positive Shear Inspection Load)을 통해 DI-ID를 산정한다. 제안된 방법의 검증을 위해 5층의 전단빌딩 축소모형을 대상구조물로 선정했으며, 단일손상과 다중손상의 모사를 위해 1층과 3층의 휨강성을 각각 10% 씩 저감시켰다. Static test와 modal test를 통해 각각의 결과를 비교하는 방법으로 제안된 방법의 성능검증을 수행했으며, 축소모형실험 결과, 두 실험간 평균오차 1% 이내로 정확도를 검증했다.

  • PDF

Free Vibration Characteristics of a Composite Beam with Multiple Transverse Open Cracks (다중 크랙이 있는 복합재료 보의 자유진동 특성)

  • 하태완;송오섭
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.9-20
    • /
    • 2000
  • Free vibration characteristics of a cantilevered laminated composite beam with multiple non-propagating transverse open cracks are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The multiple open cracks are modelled as equivalent rotational springs whose spring constants are calculated based on the fracture mechanics of composite material structures. Governing equations of a composite beam with open cracks are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect is adopted. The effects of various parameters such as the ply angle, fiber volume fraction, crack numbers, crack positions and crack depthes on the free vibration characteristics of the beam with multiple cracks are highlighted. The numerical results show that the existence of the multiple cracks in an anisotropic composite beam affects the free vibration characteristics in a more complex fashion compared with the beam with a single crack.

  • PDF

Generalized Nyquist Criterion for the Stability of Xenon Oscillation (일반화된 Nyquist 요건에 의한 제논진동의 안전성 분석)

  • Park, You-Cho;Park, Goon-Cherl;Chung, Chang-Hyun;Park, Chong-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.371-379
    • /
    • 1990
  • The Xenon spatial oscillation may give rise to operational difficulties in a nuclear power plant. In this study, in order to investigate the Xenon instability for a PWR, the frequency-domain technique is adopted by using Generalized Nyquist Criterion, which is more general and suitable for the multi-input/multi-output system. Also linearized modal fluxes are obtained by a modal expansion. This model has been implemented to test the axial Xenon stability of YGN-1 unit against the changes in plant operating parameters ; power level, control rod position, and core average burnup. The results show that the increase of power level and the deeper insertion of control rod have the destabilizing effect, and that the burnup progress makes the core less stable. Also the results show that the overestimation due to modal interaction was found not to be significant.

  • PDF

Nonlinear Dynamic Characteristics of Antisymmetric Laminated Shells (역대칭 적층쉘의 비선형 동적 특성에 관한 연구)

  • Park, Sung Jin;Mikami, Takashi;Kim, Young Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.691-700
    • /
    • 1998
  • Based on Von Karman-Donnell kinematic assumptions for laminated shells, the nonlinear vibration behaviour of antisymmetrically or asymmetrically laminated cross-ply circular cylindrical shells with clamped and simply-supported ends are studied by a multi-mode approach. A equation is formulated and satisfies the associated compatibility equation and all boundary conditions. The displacement function is assumed to take the form of the lowest linear vibration mode and to satisfy continuity of the circumferential displacement. The nonlinear vibration equation is derived by the Galerkin's method. And nonlinear frequency is obtained by using the harmonic balance method as a function of lamination parameters, material constants, aspect ratio and amplitude of vibration. The effect of initial imperfection is also included. Results of the non-linear vibration are presented for different amplitudes of initial imperfection and four sets of boundary conditions. Present results are compared well with existing analysis results.

  • PDF

Active Control of Multi-Mode Forced Vibration Using PZT (PZT를 이용한 다중 모드 강제 진동의 능동 제어)

  • 한상보;윤신일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.407-412
    • /
    • 1997
  • There has been a recent surge of research interest on the smart structure. This paper presents active vibration control scheme of multi-mode forced vibration using piezoceramic sensors/actuators. The control scheme adopted is the Positive Position Feedback control. Among various vibration control techniques, PPF control technique makes use of generalized displacement measurements to accomplish vibration suppression. Two independent controllers are implemented to control the first and the second modes of the beam under external excitation. Experimental results for various damping ratio and feedback gains of the PPF controllers are compared with respect to the control efficiency. The results indicate that steady state vibration under wideband excitation can be controlled effectively when multiple sets of PZT sensors/actuators were used with PPF control technique.

  • PDF

The Control of flexible Beam using A Simple Command Control Shaping (입력제어신호 변형을 이용한 유연한 빔의 제어)

  • 박윤명;김승철;박양수;박선국;최부귀
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.115-121
    • /
    • 2000
  • Command shaping is an important method to reduce vibration in flexible beam. This paper presents a very simple command control shaping which eliminates multiple mode residual vibration in a flexible beam in finite time. The command is constructed by solving linear equations. The finite time duration in which the desired motion of joint angle is achieved along with elimination of the residual vibration can be arbitrarily specified. The necessary conditions for using command as a reference input for the joint angle in a closed-loop configuration are also discussed. The effectiveness of Proposed scheme is demonstrated through computer simulation.

  • PDF

Multi-Modal Vibration Control of Truss Structures Using Piezoelectric Actuators (압전작동기를 이용한 트러스 구조물의 다중 모드 진동제어)

  • Ju, Hyeong-Dal;Park, Hyeon-Cheol;Hwang, Un-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2502-2512
    • /
    • 2000
  • Truss structures are widely used in many space structures, such as large antenna systems, space stations, precision segmented telescopes because they are light in weight and amenable in assembly or deployment. But, due to the low damping capacity, they remain excited for a long time once disturbed. These structural vibrations can reduce life of the structures and cause unstable dynamic characteristics. In this research, vibration suppression experiment has carried out with a three-dimensional 15-member truss structure using two piezoelectric actuators. Piezoelectric actuators which consist of stacks of thin piezoelectric material disks are directly inserted to the truss structure collocated with the strain sensors. Each actuator is controlled digitally in decentralized manner, based on local integral and proportional feedback. The optimal positions of the actuators are determined by the modal damping ratio and the control force. Numerical simulation has carried out to determine optimal position of each actuator.