• 제목/요약/키워드: 다중시기(multi-temporal)

Search Result 88, Processing Time 0.026 seconds

Sedimentary Environment Change in Mid-channel Bar of the Lower Geum River Using Multi-temporal Satellite Data (다중시기 영상자료를 이용한 금강하류의 하중도 퇴적환경 변화)

  • Hong, Ki-Byung;Jang, Dong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.3
    • /
    • pp.171-183
    • /
    • 2009
  • This study aims to analyze the sedimentary environment change in mid-channel bar of the lower Geum river basin after the construction of the estuary barrage using multi-temporal satellite data and GIS. The sedimentary environment changes were observed in mid-channel bar areas. The mid-channel bar F was found to have been newly formed for 10 years(1996-2006), whereas the mid-channel bar B located between mid-channel bar A and C has disappeared by erosion during the same periods. When examined by section, the areas of the mid-channel bar in the upper stream section from the Yipo's reference point generally increased due to the prevailing sedimentary environments, and those of the downstream section decreased where corrosive environments are dominant. In ternms of the centroid movement, the mid-channel bars grew up toward the downstream by switching erosion and accumulation, as sedimentation was prevailing in the downstream area of mid-channel bars and corrosion was dominant in the upper stream. Through grain size analysis, the study areas are divided into three sections according to the average grain size. In Section I, the mid-channel bars were formed as a result of sedimentary process of tides in the past. In Section II, the mid-channel bars were formed partly through the sedimentary process of rivers although the sedimentary process of tides is prevailing. In Section III, the mid-channel bars were formed mainly through the sedimentary process of rivers, even if it showed the sedimentary process of tides in the past.

Ground Subsidence Measurements of Noksan National Industrial Complex using C-band Multi-temporal SAR images (C-밴드 다중시기 SAR 위성 영상을 이용한 녹산국가산업단지 일대의 지반침하 관측)

  • Cho, Minji;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.161-172
    • /
    • 2014
  • Established in the lower reaches of the Nakdong river in Busan, the Noksan national industrial complex is one of the deepest soft ground areas in Korea. In case of the costal landfill having deep soft ground, there is a significant residual settlement over a long period of time. In this study, there was observed ground subsidence occurred in the Noksan national industrial complex from September 2002 to April 2007 by applying DInSAR and SBAS time series method using RADARSAT-1 and Envisat SAR datasets. As a result, it was calculated that ground subsidence developed at the velocity of about maximum 10 cm/yr and mean 6 cm/yr at the eastern center, west, western center and southern area contiguous on the coastline of the study area during the period from September 2002 to April 2007. In addition, the RADARSAT-1 average displacement map has been compared with the total displacement map observed by accurate magnetic probe extensometer during the period from 2001 to 2002. Since the time series displacement has shown a linear trend mostly, we consider that continuous monitoring should be needed until the ground subsidence of the study area has been stabilized.

Combining 2D CNN and Bidirectional LSTM to Consider Spatio-Temporal Features in Crop Classification (작물 분류에서 시공간 특징을 고려하기 위한 2D CNN과 양방향 LSTM의 결합)

  • Kwak, Geun-Ho;Park, Min-Gyu;Park, Chan-Won;Lee, Kyung-Do;Na, Sang-Il;Ahn, Ho-Yong;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.681-692
    • /
    • 2019
  • In this paper, a hybrid deep learning model, called 2D convolution with bidirectional long short-term memory (2DCBLSTM), is presented that can effectively combine both spatial and temporal features for crop classification. In the proposed model, 2D convolution operators are first applied to extract spatial features of crops and the extracted spatial features are then used as inputs for a bidirectional LSTM model that can effectively process temporal features. To evaluate the classification performance of the proposed model, a case study of crop classification was carried out using multi-temporal unmanned aerial vehicle images acquired in Anbandegi, Korea. For comparison purposes, we applied conventional deep learning models including two-dimensional convolutional neural network (CNN) using spatial features, LSTM using temporal features, and three-dimensional CNN using spatio-temporal features. Through the impact analysis of hyper-parameters on the classification performance, the use of both spatial and temporal features greatly reduced misclassification patterns of crops and the proposed hybrid model showed the best classification accuracy, compared to the conventional deep learning models that considered either spatial features or temporal features. Therefore, it is expected that the proposed model can be effectively applied to crop classification owing to its ability to consider spatio-temporal features of crops.

Land Cover Mapping and Availability Evaluation Based on Drone Images with Multi-Spectral Camera (다중분광 카메라 탑재 드론 영상 기반 토지피복도 제작 및 활용성 평가)

  • Xu, Chun Xu;Lim, Jae Hyoung;Jin, Xin Mei;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.589-599
    • /
    • 2018
  • The land cover map has been produced by using satellite and aerial images. However, these two images have the limitations in spatial resolution, and it is difficult to acquire images of a area at desired time because of the influence of clouds. In addition, it is costly and time-consuming that mapping land cover map of a small area used by satellite and aerial images. This study used multispectral camera-based drone to acquire multi-temporal images for orthoimages generation. The efficiency of produced land cover map was evaluated using time series analysis. The results indicated that the proposed method can generated RGB orthoimage and multispectral orthoimage with RMSE (Root Mean Square Error) of ${\pm}10mm$, ${\pm}11mm$, ${\pm}26mm$ and ${\pm}28mm$, ${\pm}27mm$, ${\pm}47mm$ on X, Y, H respectively. The accuracy of the pixel-based and object-based land cover map was analyzed and the results showed that the accuracy and Kappa coefficient of object-based classification were higher than that of pixel-based classification, which were 93.75%, 92.42% on July, 92.50%, 91.20% on October, 92.92%, 91.77% on February, respectively. Moreover, the proposed method can accurately capture the quantitative area change of the object. In summary, the suggest study demonstrated the possibility and efficiency of using multispectral camera-based drone in production of land cover map.

Evaluating Changes in Blue Carbon Storage by Analyzing Tidal Flat Areas Using Multi-Temporal Satellite Data in the Nakdong River Estuary, South Korea (다중시기 위성자료 기반 낙동강 하구 지역 갯벌 면적 분석을 통한 블루카본 저장량 변화 평가)

  • Minju Kim;Jeongwoo Park;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.191-202
    • /
    • 2024
  • Global warming is causing abnormal climates worldwide due to the increase in greenhouse gas concentrations in the atmosphere, negatively affecting ecosystems and humanity. In response, various countries are attempting to reduce greenhouse gas emissions in numerous ways, and interest in blue carbon, carbon absorbed by coastal ecosystems, is increasing. Known to absorb carbon up to 50 times faster than green carbon, blue carbon plays a vital role in responding to climate change. Particularly, the tidal flats of South Korea, one of the world's five largest tidal flats, are valued for their rich biodiversity and exceptional carbon absorption capabilities. While previous studies on blue carbon have focused on the carbon storage and annual carbon absorption rates of tidal flats, there is a lack of research linking tidal flat area changes detected using satellite data to carbon storage. This study applied the direct difference water index to high-resolution satellite data from PlanetScope and RapidEye to analyze the area and changes of the Nakdong River estuary tidal flats over six periods between 2013 and 2023, estimating the carbon storage for each period. The analysis showed that excluding the period in 2013 with a different tidal condition, the tidal flat area changed by up to approximately 5.4% annually, ranging from about 9.38 km2 (in 2022) to about 9.89 km2 (in 2021), with carbon storage estimated between approximately 30,230.0 Mg C and 31,893.7 Mg C.

Error Analysis of Waterline-based DEM in Tidal Flats and Probabilistic Flood Vulnerability Assessment using Geostatistical Simulation (지구통계학적 시뮬레이션을 이용한 수륙경계선 기반 간석지 DEM의 오차 분석 및 확률론적 침수 취약성 추정)

  • KIM, Yeseul;PARK, No-Wook;JANG, Dong-Ho;YOO, Hee Young
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.4
    • /
    • pp.85-99
    • /
    • 2013
  • The objective of this paper is to analyze the spatial distribution of errors in the DEM generated using waterlines from multi-temporal remote sensing data and to assess flood vulnerability. Unlike conventional research in which only global statistics of errors have been generated, this paper tries to quantitatively analyze the spatial distribution of errors from a probabilistic viewpoint using geostatistical simulation. The initial DEM in Baramarae tidal flats was generated by corrected tidal level values and waterlines extracted from multi-temporal Landsat data in 2010s. When compared with the ground measurement height data, overall the waterline-based DEM underestimated the actual heights and local variations of the errors were observed. By applying sequential Gaussian simulation based on spatial autocorrelation of DEM errors, multiple alternative error distributions were generated. After correcting errors in the initial DEM with simulated error distributions, probabilities for flood vulnerability were estimated under the sea level rise scenarios of IPCC SERS. The error analysis methodology based on geostatistical simulation could model both uncertainties of the error assessment and error propagation problems in a probabilistic framework. Therefore, it is expected that the error analysis methodology applied in this paper will be effectively used for the probabilistic assessment of errors included in various thematic maps as well as the error assessment of waterline-based DEMs in tidal flats.

A Convolutional Neural Network Model with Weighted Combination of Multi-scale Spatial Features for Crop Classification (작물 분류를 위한 다중 규모 공간특징의 가중 결합 기반 합성곱 신경망 모델)

  • Park, Min-Gyu;Kwak, Geun-Ho;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1273-1283
    • /
    • 2019
  • This paper proposes an advanced crop classification model that combines a procedure for weighted combination of spatial features extracted from multi-scale input images with a conventional convolutional neural network (CNN) structure. The proposed model first extracts spatial features from patches with different sizes in convolution layers, and then assigns different weights to the extracted spatial features by considering feature-specific importance using squeeze-and-excitation block sets. The novelty of the model lies in its ability to extract spatial features useful for classification and account for their relative importance. A case study of crop classification with multi-temporal Landsat-8 OLI images in Illinois, USA was carried out to evaluate the classification performance of the proposed model. The impact of patch sizes on crop classification was first assessed in a single-patch model to find useful patch sizes. The classification performance of the proposed model was then compared with those of conventional two CNN models including the single-patch model and a multi-patch model without considering feature-specific weights. From the results of comparison experiments, the proposed model could alleviate misclassification patterns by considering the spatial characteristics of different crops in the study area, achieving the best classification accuracy compared to the other models. Based on the case study results, the proposed model, which can account for the relative importance of spatial features, would be effectively applied to classification of objects with different spatial characteristics, as well as crops.

A Study for Monitoring Soil Liquefaction Occurred by Earthquakes Using Soil Moisture Indices Derived from the Multi-temporal Landsat Satellite Imagery Acquired in Pohang, South Korea (다중시기 Landsat 위성영상으로부터 산출한 토양 수분 지수를 활용하여 지진 발생으로 인한 토양 액상화 모니터링에 관한 연구: 포항시를 사례로)

  • PARK, Insun;KIM, Kyoung-Seop;HAN, Byeong Cheol;CHOUNG, Yun-Jae;GU, Bon Yup;HAN, Jin Tae;KIM, Jongkwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.126-137
    • /
    • 2021
  • Recently, the number of damages on social infrastructure has increased due to natural disasters and the frequency of earthquake events that are higher than magnitude 3 has increased in South Korea. Liquefaction was found near the epicenter of a 5.4 magnitude earthquake that occurred in Pohang, South Korea, in 2017. To explore increases in soil moisture index due to soil liquefaction, changes in the remote exploration index by the land cover before and post-earthquake occurrence were analyzed using liquefaction feasibility index and multi-cyclical Landsat-8 satellite images. We found that the soil moisture index(SMI) in the liquefaction region immediately after the earthquake event increased significantly using the Normal Vegetation Index(NDVI) and Surface Temperature(LST).

Atmospheric Correction Effectiveness Analysis of Reflectance and NDVI Using Multispectral Satellite Image (다중분광위성자료의 대기보정에 따른 반사도 및 식생지수 분석)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.981-996
    • /
    • 2018
  • In agriculture, remote sensing data using earth observation satellites have many advantages over other methods in terms of time, space, and efficiency. This study analyzed the changes of reflectance and vegetation index according to atmospheric correction of images before using satellite images in agriculture. Top OF Atmosphere (TOA) reflectance and surface reflectance through atmospheric correction were calculated to compare the reflectance of each band and Normalized Vegetation difference Index (NDVI). As a result, the NDVI observed from field measurement sensors and satellites showed a higher agreement and correlation than the TOA reflectance calculated from surface reflectance using atmospheric correction. Comparing NDVI before and after atmospheric correction for multi-temporal images, NDVI increased after atmospheric corrected in all images. garlic and onion cultivation area and forest where the vegetation health was high area NDVI increased more 0.1. Because the NIR images are included in the water vapor band, atmospheric correction is greatly affected. Therefore, atmospheric correction is a very important process for NDVI time-series analysis in applying image to agricultural field.

Vessel Detection Using Satellite SAR Images and AIS Data (위성 SAR 영상과 AIS을 활용한 선박 탐지)

  • Lee, Kyung-Yup;Hong, Sang-Hoon;Yoon, Bo-Yeol;Kim, Youn-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.2
    • /
    • pp.103-112
    • /
    • 2012
  • We demonstrate the preliminary results of ship detection application using synthetic aperture radar (SAR) and automatic identification system (AIS) together. Multi-frequency and multi-temporal SAR images such as TerraSAR-X and Cosmo-SkyMed (X-band), and Radarsat-2 (C-band) are acquired over the West Sea in South Korea. In order to compare with SAR data, we also collected an AIS data. The SAR data are pre-processed considering by the characteristics of scattering mechanism as for sea surface. We proposed the "Adaptive Threshold Algorithm" for classification ship efficiently. The analyses using the combination of the SAR and AIS data with time series will be very useful to ship detection or tracing of the ship.