Communications for Statistical Applications and Methods
/
v.17
no.6
/
pp.899-907
/
2010
Several non-response imputation methods are suggested, however, mainly cross-sectional imputations are studied and applied to this analysis. A simple and common imputation method for panel data is the cross-wave regression imputation or carry-over imputation as a special case of cross-wave regression imputation. This study suggests a multiple imputation method combined time series analysis and cross-sectional multiple imputation method. We compare this method and the cross-wave regression imputation method using MSE, MAE, and Bias. The 2008 monthly labor survey data is used for this study.
Journal of the Korean Association of Geographic Information Studies
/
v.15
no.3
/
pp.66-80
/
2012
It is necessary to normalize spectral image values derived from multi-temporal satellite data to a common scale in order to apply remote sensing methods for change detection, disaster mapping, crop monitoring and etc. There are two main approaches: absolute radiometric normalization and relative radiometric normalization. This study focuses on the multi-temporal satellite image processing by the use of relative radiometric normalization. Three scenes of KOMPSAT-2 imagery were processed using the Multivariate Alteration Detection(MAD) method, which has a particular advantage of selecting PIFs(Pseudo Invariant Features) automatically by canonical correlation analysis. The scenes were then applied to detect disaster areas over Sendai, Japan, which was hit by a tsunami on 11 March 2011. The case study showed that the automatic extraction of changed areas after the tsunami using relatively normalized satellite data via the MAD method was done within a high accuracy level. In addition, the relative normalization of multi-temporal satellite imagery produced better results to rapidly map disaster-affected areas with an increased confidence level.
Proceedings of the Korea Water Resources Association Conference
/
2007.05a
/
pp.1512-1516
/
2007
자신의 현재와 과거의 시계열데이터만을 가지고 시계열 모형을 구축하는 단변량 ARIMA모형 분석법과는 달리, 관심의 대상이 되는 출력시계열과 이와 관련있는 입력시계열의 동태적 특성을 나타내는 전이함수모형(Transfer function model)을 사용하여 소양강댐, 충주댐, 화천댐에 대한 월별 수문자료를 이용하여 유입량을 예측해 보고자 한다. 본 연구의 주요 목적은 다변량 추계학적 시스템의 해석을 위한 모형의 추정과 등정을 위한 과정을 개발하는데 있다. 일반적 추계학적 시스템 모형이 표현되며 그것으로부터 수문학적 시스템의 모형을 매우 적절하게 유도하기 위한 다중 입력-단일 출력 TF, TFN모형을 유도하는데 있다. 이 모형은 수문학적 시스템을 위한 경우에 있어 상관된 입력을 설명할 수 있도록 개발된다. 일반적으로 모형을 만드는 전략이 유도되며 실제유역시스템에 적용하여 검토된다. 한강수계 주요 다목적댐인 소양강댐, 충주댐, 화천댐의 수문자료를 가지고 추계학적 모형(TF, TFN)에 의한 결과와 실제유입량을 비교하여 검토하고자 한다.
UAV in the agricultural application are capable of collecting ultra-high resolution image. It is possible to obtain timeliness images for phenological phases of the crop. However, the UAV uses a variety of sensors and multi-temporal images according to the environment. Therefore, it is essential to use normalized image data for time series image application for crop monitoring. This study analyzed the variability of UAV reflectance and vegetation index according to Aviation Image Making Environment to utilize the UAV multispectral image for agricultural monitoring time series. The variability of the reflectance according to environmental factors such as altitude, direction, time, and cloud was very large, ranging from 8% to 11%, but the vegetation index variability was stable, ranging from 1% to 5%. This phenomenon is believed to have various causes such as the characteristics of the UAV multispectral sensor and the normalization of the post-processing program. In order to utilize the time series of unmanned aerial vehicles, it is recommended to use the same ratio function as the vegetation index, and it is recommended to minimize the variability of time series images by setting the same time, altitude and direction as possible.
Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.147-149
/
2020
코로나바이러스의 세계 확산, 발병 이후 사람들의 실내활동 증가와 건강, 면역에 대한 관심은 많이 증가했다. 이에 맞춰 더욱 정교하고 바른 정보에 의한 스마트헬스케어 역시 관심이 증대되고 있다. 여기서 이야기하는 스마트헬스케어의 범위는 영상 장치를 비롯해 다양한 센서를 활용해 신체활동을 모니터링하고 분석하며 기존의 방식보다 더 객관적인 정보를 제공해 주는 것을 말한다. 위 기술과 대중의 관심을 바탕으로 하여 본 연구에서는 다중 모드 센서를 신체에 부착하여 신체활동을 모니터링 하는 시스템 개발을 목적으로 한다. 하드웨어 설계 부분에서 설계가 완성된 Arduino nano 33 Sense를 이용하여 스마트 헬스 실험 시간을 대폭 줄였다. 또한 운동과 같은 시계열 데이터를 분석하기 좋은 LSTM 기법을 채택하였으며, 개발된 모델을 추후 활용할 방안에 대해 논하였다.
This study proposed a multiple intervention time series model to predict KTX passenger demand. In order to revise the research of Kim and Kim (Korean Society for Railway, 14, 470-476, 2011) considering only the intervention of the second phase of Gyeong-bu before November of 2011, we adopted multiple intervention seasonal ARIMA models to model the time series data with additional interventions which occurred after November of 2011. Through the data analysis, it was confirmed that the effects of various interventions such as Gyeong-bu and Ho-nam 2 phase, outbreak of MERS and national holidays, which affected the KTX transportation demand, are successfully explained and the prediction accuracy could be quite improved significantly.
Xu, Chun Xu;Lim, Jae Hyoung;Jin, Xin Mei;Yun, Hee Cheon
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.36
no.6
/
pp.589-599
/
2018
The land cover map has been produced by using satellite and aerial images. However, these two images have the limitations in spatial resolution, and it is difficult to acquire images of a area at desired time because of the influence of clouds. In addition, it is costly and time-consuming that mapping land cover map of a small area used by satellite and aerial images. This study used multispectral camera-based drone to acquire multi-temporal images for orthoimages generation. The efficiency of produced land cover map was evaluated using time series analysis. The results indicated that the proposed method can generated RGB orthoimage and multispectral orthoimage with RMSE (Root Mean Square Error) of ${\pm}10mm$, ${\pm}11mm$, ${\pm}26mm$ and ${\pm}28mm$, ${\pm}27mm$, ${\pm}47mm$ on X, Y, H respectively. The accuracy of the pixel-based and object-based land cover map was analyzed and the results showed that the accuracy and Kappa coefficient of object-based classification were higher than that of pixel-based classification, which were 93.75%, 92.42% on July, 92.50%, 91.20% on October, 92.92%, 91.77% on February, respectively. Moreover, the proposed method can accurately capture the quantitative area change of the object. In summary, the suggest study demonstrated the possibility and efficiency of using multispectral camera-based drone in production of land cover map.
This article is concerned with asymmetric volatility models for financial time series. A generalization of standard single-threshold volatility model is discussed via multiple-threshold in which we specialize to twothreshold case for ease of presentation. An empirical illustration is made by analyzing S&P500 data from NYSE (New York Stock Exchange). For comparison measures between competing models, parametric bootstrap method is used to generate forecast distributions from which summary statistics of CP (Coverage Probability) and PE (Prediction Error) are obtained. It is demonstrated that our suggestion is useful in the field of asymmetric volatility analysis.
A multi-Gaussian kriging approach extended to space-time domain is presented for uncertainty modeling as well as time-series mapping of environmental variables. Within a multi-Gaussian framework, normal score transformed environmental variables are first decomposed into deterministic trend and stochastic residual components. After local temporal trend models are constructed, the parameters of the models are estimated and interpolated in space. Space-time correlation structures of stationary residual components are quantified using a product-sum space-time variogram model. The ccdf is modeled at all grid locations using this space-time variogram model and space-time kriging. Finally, e-type estimates and conditional variances are computed from the ccdf models for spatial mapping and uncertainty analysis, respectively. The proposed approach is illustrated through a case of time-series Particulate Matter 10 ($PM_{10}$) concentration mapping in Incheon Metropolitan city using monthly $PM_{10}$ concentrations at 13 stations for 3 years. It is shown that the proposed approach would generate reliable time-series $PM_{10}$ concentration maps with less mean bias and better prediction capability, compared to conventional spatial-only ordinary kriging. It is also demonstrated that the conditional variances and the probability exceeding a certain thresholding value would be useful information sources for interpretation.
This paper describes a new measuring technique by analysing multiple time-series patterns. This paper's goal is that extracts a really measured value having a sample pattern which is the best matched with an inputted time-series, and calculates a difference ratio with the value. Therefore, the proposed technique is not a recognition but a measurement. and not a hardware but a software. The proposed technique is consisted of three stages, initialization, learning and measurement. In the initialization stage, it decides weights of all parameters using importance given by an operator. In the learning stage, it classifies sample patterns using LBG and DTW algorithm, and then creates code sequences for all the patterns. In the measurement stage, it creates a code sequence for an inputted time-series pattern, finds samples having the same code sequence by hashing, and then selects the best matched sample. Finally it outputs the really measured value with the sample and the difference ratio. For the purpose of performance evaluation, we tested on multiple time-series patterns obtained from etching machine which is a semiconductor manufacturing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.