• Title/Summary/Keyword: 다중시계열분석

Search Result 111, Processing Time 0.029 seconds

Multiple aggregation prediction algorithm applied to traffic accident counts (다중 결합 예측 알고리즘을 이용한 교통사고 발생건수 예측)

  • Bae, Doorham;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.6
    • /
    • pp.851-865
    • /
    • 2019
  • Discovering various features from one time series is complicated. In this paper, we introduce a multi aggregation prediction algorithm (MAPA) that uses the concepts of temporal aggregation and combining forecasts to find multiple patterns from one time series and increase forecasting accuracy. Temporal aggregation produces multiple time series and each series has separate properties. We use exponential smoothing methods in the next step to extract various features of time series components in order to forecast time series components for each series. In the final step, we blend predictions of the same kind of components and forecast the target series by the summation of blended predictions. As an empirical example, we forecast traffic accident counts using MAPA and observe that MAPA performance is superior to conventional methods.

다중 시기 원격탐사 자료를 이용한 태풍 루사로 인한 강릉 사천천 주변 환경 변화 탐지

  • Park, No-Uk;Ji, Gwang-Hun
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.408-413
    • /
    • 2005
  • 이 논문에서는 2002년 여름 태풍 루사로 인해 많은 재해 피해를 입은 강원도 강릉시 사천천 주변의 변화 정보를 추출하고자 다중 시기 원격탐사 자료를 이용하였다. 태풍 루사 이전과 이후의 다중 시기 원격탐사 자료를 이용하여 변화 탐지 기법을 적용하여 사천천 주변의 환경 변화 정보를 추출하고 분석하였다. 시계열 자료를 이용함으로써 태풍 루사로 인한 재해 현황 정보뿐만 아니라 그 이후의 복구 과정을 확인할 수 있었으며, 앞으로 재해분야에 시계열 원격탐사 자료의 많은 활용이 기대된다.

  • PDF

Fuzzy System Optimization Based on RCGKA and its Application to Time Series Prediction (RCGKA기반 퍼지 시스템 최적화 및 시계열 예측 응용)

  • Bang, Young-Keun;Shim, Jae-Sun;Park, Jong-Kuk;Lee, Chul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1644_1645
    • /
    • 2009
  • 본 논문은 비정상 시계열 예측을 위한 다중모델 퍼지 시스템과, 제안된 시스템의 최적화를 위한 유전 알고리즘의 응용을 다룬다. 일반적으로, 퍼지 예측시스템의 성능은 비선형 데이터가 가지고 있는 다양한 패턴이나 법칙성, 경향 등을 잘 분석하고 시스템에 반영함으로써 개선될 수 있다. 따라서, 본 논문은 원형 시계열의 특성을 보다 잘 반영할 수 있는 그들의 차분데이터를 시스템에 적용하며, 생성 가능한 차분 데이터들 중 원형 시계열의 특징에 가까운 일부를 추출하여 다중모델 퍼지 예측 시스템을 구현함으로써 다양한 원형시계열의 패턴이나 법칙성 등이 고려될 수 있도록 하였다. 다중 모델 퍼지 시스템의 각각의 예측기에는 구조가 간단한 k-means 클러스터링 기법을 적용하여 구현의 용이성을 꽤하였으며, 성능평가를 통해 선택된 최종 예측기는 RCGKA(real-coded genetic k-means clustering algorithms)를 통해 더욱 최적화된 규칙기반을 가지게 함으로써 예측성능이 개선될 수 있도록 하였다. 본 논문에 사용된 최적화 기법인 RCGKA에는 또한 성능이 우수한 다양한 유전연산자를 도입하여 더욱 예측기 성능이 강화될 수 있도록 하였으며, 시뮬레이션을 통해 제안된 예측시스템의 효용성을 증명하였다.

  • PDF

Indoor Pedestrian Detection-Counting and Analysis-Prediction Techniques for Multi-Complex Building (다중이용시설 이용자수 감지계수 및 분석예측 기술 개발)

  • Jang, Bongseog
    • Journal of Integrative Natural Science
    • /
    • v.15 no.2
    • /
    • pp.73-81
    • /
    • 2022
  • 본 연구는 다중이용시설 이용자들의 쾌적함과 안전 그리고 시설내부 에너지 사용량의 최적 절감을 위하여 이용자수를 분석예측한 정보에 따른 공기질품질제어시스템 운영을 통해 국민 중심의 안전하고 쾌적한 서비스를 제공할 필요로 수행되었다. 이를 위하여 실내유동인구수를 카운팅하는 로컬시스템을 제작하고 수집된 유동인구 카운팅 정보를 시계열 모델링을 기반으로 분석예측하는 연구를 진행하였다. 개발된 시스템 성능평가 결과 유동인구 카운팅시스템은 95% 이상 정확도를 보여주었고, 예측시스템은 83~95% 정확도를 확보하였다. 본 연구결과 개발된 시스템은 다중이용시설에 즉시 적용가능하며 향후 남녀노소 인식을 진행하고 이를 예측한 정보에 의한 보다 다양한 서비스 개발을 추진할 계획이다.

A Study on the Predictive Power Improvement of Time Series Model with Empirical Mode Decomposition Method (경험적 모드분해법을 이용한 시계열 모형의 예측력 개선에 관한 연구)

  • Kim, Taereem;Shin, Hongjoon;Nam, Woosung;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.981-993
    • /
    • 2015
  • The analysis of hydrologic time series data is crucial for the effective management of water resources. Therefore, it has been widely used for the long-term forecasting of hydrologic variables. In tradition, time series analysis has been used to predict a time series without considering exogenous variables. However, many studies using decomposition have been widely carried out with the assumption that one data series could be mixed with several frequent factors. In this study, the empirical mode decomposition method was performed for decomposing a hydrologic time series data into several components, and each component was applied to the time series models, autoregressive moving average (ARMA). After constructing the time series models, the forecasting values are added to compare the results with traditional time series model. Finally, the forecasted estimates from ARMA model with empirical mode decomposition method showed better performance than sole traditional ARMA model indicated from comparing the root mean square errors of the two methods.

Cognitive Map Analysis for Policy Agenda Setting : a case of the Green Growth in Korea

  • Kim, Dong-Hwan;An, Jiyoung;Lee, Eunkyu
    • Korean System Dynamics Review
    • /
    • v.17 no.1
    • /
    • pp.65-75
    • /
    • 2016
  • 21세기 들어 기후변화와 지구 온난화로 인한 환경에 대한 정책적 관심이 높아져 왔다. 21세기 초에 집권하였던 한국의 이명박 정부에서는 '녹색 성장(green growth)' 정책을 내걸어서 환경 정책과 경제 성장 정책을 동시에 포괄하고자 하였다. 본 논문에서는 어떠한 과정을 거쳐서 녹색 성장 정책의 아젠다가 형성되었는지를 연구하고자 한다. 이를 위해 본 연구에서는 녹색 성장이라는 정책 아젠다가 형성되는 행태적 과정에 관한 시계열 분석과 함께 구조적 측면으로서 인지지도 분석을 수행한다. 정책 아젠다의 시계열 분석을 위하여 신문 기사와 정책 보고서를 분석하며, 이명박 대통령의 연설문을 분석하여 인지지도를 구축한다. 정책 형성에 관한 시계열 분석 결과 녹색성장의 정책 아젠다 형성에 있어서 정치적 요인에 대한 고려가 사회적 이슈나 정책적 이슈보다 중요한 역할을 수행하였다는 점을 발견할 수 있었다. 다른 한편으로 본 연구의 인지지도 분석은 이명박 대통령의 녹색성장 정책이 미래의 다중 위기에 대한 대응으로 나왔으며, 환경의 발전에 초점을 둔다기 보다는 경제적 발전 특히 일자리 창출을 지향하고 있다는 점을 보여주었다. 본 연구는 인지지도 분석을 통하여 시계열 분석으로는 발견할 수 없는 정책형성의 구조적 관계성을 이해할 수 있다는 점을 보여준다.

A Comparison of InSAR Techniques for Deformation Monitoring using Multi-temporal SAR (다중시기 SAR 영상을 이용한 시계열 변위 관측기법 비교 분석)

  • Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.143-151
    • /
    • 2010
  • We carried out studies on InSAR techniques for time-series deformation monitoring using multi-temporal SAR. The PSInSAR method using permanent scatterer is much more complicate than the SBAS because it includes many non-linear equation due to the input of wrapped phase. It is conformed the PS algorithm is very sensitive to even PSC selection. On the other hand, the SBAS method using interferogram of small baseline subset is simple but sensitive to the accuracy of unwrapped phase. The SBAS is better method for expecting not significant unwrapping error while PSInSAR is more proper method for expecting local deformation within very limited area. We used 51 ERS-1/2 SAR data during 1992-2000 over Las Vegas, USA for the comparison between PSInSAR and SBAS. Both PSInSAR and SBAS show similar ground deformation value although local deformation seems to be detected in the PSInSAR method only.

An Impact of Gas Prices on Transit Demand Using a Time-series Analysis and a Regression Analysis (시계열 및 회귀분석을 활용한 휘발유가격의 광역권별·수단별 대중교통수요 영향력 비교분석)

  • Lee, Kwang Sub;Eom, Jin Ki;Moon, Dae Seop;Yang, Keun Yul;Lee, Jun
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.1
    • /
    • pp.13-26
    • /
    • 2014
  • Depending most of its energy sources on foreign countries, Korea efforts to reduce energy consumption in transportation. While studies on the relationship between gas price and transportation demand are many in number, most previous studies have focused on automobile and Seoul. This study analyzes the impact of gas price on transit (bus and subway) demand using monthly data and for various metropolitan areas (Seoul, Busan, Daejeon, Daegu and Gwangju). The research utilizes a time-series model and a multiple regression model, and calculates modal demand elasticities of gas price. The result shows that elasticities of subway demand with respect to gas price is higher than those of bus demand. In addition, elasticities of predominantly automobile cities are more likely to be more sensitive to gas price than those of cities with well-structured transit system.

Design of Multiple Model Fuzzy Prediction Systems Based on HCKA (HCKA 기반 다중 모델 퍼지 예측 시스템의 구현)

  • Bang, Young-Keun;Shim, Jae-Son;Park, Ha-Yong;Lee, Chul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1642_1643
    • /
    • 2009
  • 일반적으로, 퍼지 예측 시스템의 성능은 데이터의 특성과 퍼지 집합을 생성하기 위한 클러스터일 기법에 매우 의존적이다. 하지만, 예측을 위한 시계열 데이터들은 자연현상에 기인하는 강한 비선형적 특성을 가지고 있으므로 적합한 시스템을 구현하는 것에 많은 제약이 따른다. 따라서 본 논문에서는 시계열의 비선형적 특성을 적절히 취급하기 위하여, 그들로부터 생성 가능한 차분 데이터 중, 유효한 차분데이터를 이용하여 다중 모델 퍼지 예측 시스템을 구현함으로써, 보다 우수한 예측이 가능하도록 하였으며, 퍼지 시스템의 모델링에는 교차 상관분석기법에 따른 계층적 구조의 클러스터링 기법 (Hierarchical Cross-correlation and K-means Clustering Algorithms: HCKA)을 적용하여, 시스템을 위한 규칙기반의 적합성을 높일 수 있도록 하였다.

  • PDF

Stochastic Multiple Input-Output Model for Extension and Prediction of Monthly Runoff Series (월유출량계열의 확장과 예측을 위한 추계학적 다중 입출력모형)

  • 박상우;전병호
    • Water for future
    • /
    • v.28 no.1
    • /
    • pp.81-90
    • /
    • 1995
  • This study attempts to develop a stochastic system model for extension and prediction of monthly runoff series in river basins where the observed runoff data are insufficient although there are long-term hydrometeorological records. For this purpose, univariate models of a seasonal ARIMA type are derived from the time series analysis of monthly runoff, monthly precipitation and monthly evaporation data with trend and periodicity. Also, a causual model of multiple input-single output relationship that take monthly precipitation and monthly evaporation as input variables-monthly runoff as output variable is built by the cross-correlation analysis of each series. The performance of the univariate model and the multiple input-output model were examined through comparisons between the historical and the generated monthly runoff series. The results reveals that the multiple input-output model leads to the improved accuracy and wide range of applicability when extension and prediction of monthly runoff series is required.

  • PDF