• Title/Summary/Keyword: 다중선형회귀분석모형

Search Result 105, Processing Time 0.026 seconds

The Effects of Enterprise Size and Industry on the Employment Rate of People with Disabilities -Focusing on the Enterprises with Disability Employment Obligation That Hire at Least One Person with Disabilities- (기업의 규모와 산업이 장애인 고용률에 미치는 영향 -장애인 1인 이상 의무고용기업체를 중심으로-)

  • Kwon, Keedon;Kim, Hojin
    • Korean Journal of Social Welfare
    • /
    • v.66 no.1
    • /
    • pp.251-276
    • /
    • 2014
  • This study scrutinizes the common sense in the field of disability employment that the bigger the size of a firm, the lower the employment rate of people with disabilities. This common sense has been established by conventional cross-tabulation and multiple regression analyses without taking into account possible interactions between the sizes of firms and the industries in which they operate. This study shows that the distribution of the disability employment rate violates the linearity and homoscedasticity assumptions of the OLS. In an effort to find models that explain the data better, this study fits the OLS model, the weighted linear regression model, and the multinomial logit model as well as the path analysis which is meant to examine the relationships between firm size and other variables relevant to disability employment. The result shows that, when an interaction term between firm size and industry is added to the model, firm size does not have any significant effect on disability employment rate for those firms with 100 or more regular employees, to the contrary of the findings of prior studies. It also demonstrates that other factors such as job setting, the extent of helpfulness of disability employment employers perceive, employers' care for disability, and employers' awareness of disability policies may matter more than does firm size. This study proposes that future research and policy implementation for disability employment should pay no less attention to industry and other factors mentioned above than to firm size.

  • PDF

A comparison analysis of factors to affect pedestrian volumes by land-use type using Seoul Pedestrian Survey data (토지이용유형별 보행량 영향 요인 비교·분석 - 서울시 유동인구 조사자료를 바탕으로)

  • Jang, Jin-Young;Choi, Sung-Taek;Lee, Hyang-Sook;Kim, Su-Jae;Choo, Sang-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.2
    • /
    • pp.39-53
    • /
    • 2015
  • The paper analyzes factors to affect pedestrian volumes by land-use type using 2012 Seoul Pedestrian Survey. First of all, five groups were classified based on land-use types around survey points such as residential, commercial, industrial and green uses, using k-average cluster analysis. Then, differences in average pedestrian volumes by group were compared for a day and time of day. In addition, multiple regression analysis was employed to identify factors to affect pedestrian volumes, considering physical features, land use types, public transportation accessibility, and socio-economic indices as independent variables by spatial hierarchy. Model results show that the walkway width positively influenced on pedestrian volumes for all groups, whereas other variables differently affected by group. Our results can be used as basic data for establishing polices with respect to pedestrian road design and improvement as well as estimating pedestrian demand by land-use type.

Prediction of Seasonal Nitrate Concentration in Springs on the Southern Slope of Jeju Island using Multiple Linear Regression of Geographic Spatial Data (지리 공간 자료의 다중회귀분석을 이용한 제주도 남측사면 용천수의 시기별 질산성 질소 농도 예측)

  • Jung, Youn-Young;Koh, Dong-Chan;Kang, Bong-Rae;Ko, Kyung-Suk;Yu, Yong-Jae
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.135-152
    • /
    • 2011
  • Nitrate concentrations in springs at the southern slope of Jeju Island were predicted using multiple linear regression (MLR) of spatial variables including hydrogeological parameters and land use characteristics. Springs showed wide range of nitrate concentrations from <0.02 to 86 mg/L with a mean of 20 mg/L. Spatial variables were generated for the circular buffer when the optimal buffer radius was assigned as 400 m. Selected regression models were tested using the p values and Durbin-Watson statistics. Explanatory variables were selected using the adjusted $R^2$, Cp (total squared error) and AIC (Akaike's Information Criterion), and significance. In addition, mutual linear relations between variables were also considered. Small portion of springs, usually <10% of total samples, were identified as outliers indicating limitations of MLR using circular buffers. Adjusted $R^2$ of the proposed models was improved from 0.75 to 0.87 when outliers were eliminated. In particular, the areal proportion of natural area had the greatest influence on the nitrate concentrations in springs. Among anthropogenic land uses, the influence of nitrate contamination is diminishing in the following order of orchard, residential area, and dry farmland. It is apparent quality of springs in the study area is likely to be controlled by land uses instead of hydrogeological parameters. Most of all, it is worth highlighting that the contamination susceptibility of springs is highly sensitive to nearby land uses, in particular, orchard.

Determinants of student course evaluation using hierarchical linear model (위계적 선형모형을 이용한 강의평가 결정요인 분석)

  • Cho, Jang Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1285-1296
    • /
    • 2013
  • The fundamental concerns of this paper are to analyze the effects of student course evaluation using subject characteristic and student characteristic variables. We use a 2-level hierarchical linear model since the data structure of subject characteristic and student characteristic variables is multilevel. Four models we consider are as follows; (1) null model, (2) random coefficient model, (3) mean as outcomes model, (4) intercepts and slopes as outcomes model. The results of the analysis were given as follows. First, the result of null model was that subject characteristics effects on course evaluation had much larger than student characteristics. Second, the result of conditional model specifying subject and student level predictors revealed that class size, grade, tenure, mean GPA of the class, native class for level-1, and sex, department category, admission method, mean GPA of the student for level-2 had statistically significant effects on course evaluation. The explained variance was 13% in subject level, 13% in student level.

Determinants of employee's wage using hierarchical linear model (위계적 선형모형을 이용한 대졸 신규취업자 임금 결정요인 분석)

  • Park, Sungik;Cho, Jangsik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.65-75
    • /
    • 2015
  • This paper analyzes the determinants of wage for the college and university graduates utilizing both individual-level and industry-level variables. We note that wage determination has multi-level structure in the sense that individual wage is influenced by individual-level variables (level-1) and industry-level (level-2) variables. Then, the assumption that individual wage is independent in the classical regression is violated. Therefore, this paper utilizes the hierarchical linear model (HLM). The major results are the followings. First, the multiple correspondence analysis including level-1 and 2 variables reveals that both level 1 and level 2 variables affects individual wages judging from the fact that the values of level 1 and level 2 variables differ across the different level of individual wage groups. Second, the decision tree analysis including level-1 and 2 variables shows that the most influential variable in wage determination is industry-level wage and the next is industry-level working hour, ages and sex in the decling order in. This suggests that the utilization of the HLM is appropriate since the characteristics of industry is important in determining the individual wage. Third, it is shown that the HLM model is the best compared to the other models which do not take level-1 and level-2 variables simultaneously into account.

A Confirmation of Identified Multiple Outliers and Leverage Points in Linear Model (다중 선형 모형에서 식별된 다중 이상점과 다중 지렛점의 재확인 방법에 대한 연구)

  • 유종영;안기수
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.269-279
    • /
    • 2002
  • We considered the problem for confirmation of multiple outliers and leverage points. Identification of multiple outliers and leverage points is difficult because of the masking effect and swamping effect. Rousseeuw and van Zomeren(1990) identified multiple outliers and leverage points by using the Least Median of Squares and Minimum Value of Ellipsoids which are high-breakdown robust estimators. But their methods tend to declare too many observations as extremes. Atkinson(1987) suggested a method for confirming of outliers and Fung(1993) pointed out Atkinson method's limitation and proposed another method by using the add-back model. But we analyzed that Fung's method is affected by adjacent effect. In this thesis, we proposed one procedure for confirmation of outliers and leverage points and compared three example with Fung's method.

Construction of Urban Crime Prediction Model based on Census Using GWR (GWR을 이용한 센서스 기반 도시범죄 특성 분석 및 예측모델 구축)

  • YOO, Young-Woo;BAEK, Tae-Kyung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.65-76
    • /
    • 2017
  • The purpose of this study was to present a prediction model that reflects crime risk area analysis, including factors and spatial characteristics, as a precursor to preparing an alternative plan for crime prevention and design. This analysis of criminal cases in high-risk areas revealed clusters in which approximately 25% of the cases within the study area occurred, distributed evenly throughout the region. This means that using a multiple linear regression model might overestimate the crime rate in some regions and underestimate in others. It also suggests that the number of deserted houses in an analyzed region has a negative relationship with the dependent variable, based on the multiple linear regression model results, and can also have different influences depending on the region. These results reveal that closure signs in a study area affect the dependent variable differently, depending on the region, rather than a simple or direct relationship with the dependent variable, as indicated by the results of the multiple linear regression model.

Significance Analysis of Facility Fires Though Spatial Econometrics Assessment (공간계량분석 방법에 따른 시설물 화재 발생 유의성 분석)

  • Seo, Min Song;Yoo, Hwan Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.281-293
    • /
    • 2020
  • Recently, large and small fires have been happening more often in Korea. Fire is one of the most frequent disasters along with traffic accidents in korean cities, and this frequency is closely related to the land use and the type of facilities. Therefore, in this study, the significance of fires was analyzed by considering land use, facility types, human and social factors and using 10 years of fire data in Jinju city. Based on this, OLS (Ordinary Least Square) regression analysis, SLM (Spatial Lag Model) and SEM (Spatial Error Model) using space weights, were compared and analyzed considering the location of the fire and each factor, then a statistical model with high suitability was presented. As a result, LISA analysis of spatial distribution patterns of fires in Jinju city was conducted, and it was proved that the frequency of fires was high in the order as follow, central commercial area, industrial area and residential area. Multiple regression analysis was performed by integrating demographic, social, and physical variables. Therefore, the three models were compared and analyzed by applying spatial weighting to the derived factors. As a result of the significance test, the spatial error model was analyzed to be the most significant. The facilities that have the highest correlation with fire occurrence were second type neighborhood facilities, followed by detached house, first type neighborhood facilities, number of households, and sales facilities. The results of this study are expected to be used as significant data to identify factors and manage fire safety in urban areas. Also, through the analysis of the standard deviation ellipsoid, the distribution characteristics of each facility in the residential area, industrial area, and central commercial area among the use areas were analyzed. In, the second type neighborhood facility with the highest fire risk was concentrated in the center. The results of these studies are expected to be used as useful data for identifying factors and managing fire safety in urban areas.

Development of Optimum Traffic Safety Evaluation Model Using the Back-Propagation Algorithm (역전파 알고리즘을 이용한 최적의 교통안전 평가 모형개발)

  • Kim, Joong-Hyo;Kwon, Sung-Dae;Hong, Jeong-Pyo;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.679-690
    • /
    • 2015
  • The need to remove the cause of traffic accidents by improving the engineering system for a vehicle and the road in order to minimize the accident hazard. This is likely to cause traffic accident continue to take a large and significant social cost and time to improve the reliability and efficiency of this generally poor road, thereby generating a lot of damage to the national traffic accident caused by improper environmental factors. In order to minimize damage from traffic accidents, the cause of accidents must be eliminated through technological improvements of vehicles and road systems. Generally, it is highly probable that traffic accident occurs more often on roads that lack safety measures, and can only be improved with tremendous time and costs. In particular, traffic accidents at intersections are on the rise due to inappropriate environmental factors, and are causing great losses for the nation as a whole. This study aims to present safety countermeasures against the cause of accidents by developing an intersection Traffic safety evaluation model. It will also diagnose vulnerable traffic points through BPA (Back -propagation algorithm) among artificial neural networks recently investigated in the area of artificial intelligence. Furthermore, it aims to pursue a more efficient traffic safety improvement project in terms of operating signalized intersections and establishing traffic safety policies. As a result of conducting this study, the mean square error approximate between the predicted values and actual measured values of traffic accidents derived from the BPA is estimated to be 3.89. It appeared that the BPA appeared to have excellent traffic safety evaluating abilities compared to the multiple regression model. In other words, The BPA can be effectively utilized in diagnosing and practical establishing transportation policy in the safety of actual signalized intersections.

Analysis of Urban Heat Island Effect Using Information from 3-Dimensional City Model (3DCM) (3차원 도시공간정보를 이용한 도시열섬현상의 분석)

  • Chun, Bun-Seok;Kim, Hag-Yeol
    • Spatial Information Research
    • /
    • v.18 no.4
    • /
    • pp.1-11
    • /
    • 2010
  • Unlike the previous studies which have focused on 2-dimensional urban characteristics, this paper presents statistical models explaining urban heat island(UHI) effect by 3-dimensional urban morphologic information and addresses its policy implications. 3~dimensional informations of Columbus, Ohio arc captured from LiDAR data and building boundary informations are extracted from a building digital map, Finally NDV[ and temperature data are calculated by manipulating band 3, band 4, and thermal hand of LandSat images. Through complicated data processing, 6 independent variables(building surface area, building volume, height to width ratio, porosity, plan surface area) are introduced in simple and multiple linear regression models. The regression models are specified by Box-Tidwell method, finding the power to which the independent variable needs to raised to be in a linearity. Porosity, NDVI, and building surface area are carefully chosen as explanatory variables in the final multiple regression model, which explaining about 57% of the variability in temperatures. On reducing UHI, various implications of the results give guidelines to policy-making in open space, roof garden, and vertical garden management.