DOI QR코드

DOI QR Code

Prediction of Seasonal Nitrate Concentration in Springs on the Southern Slope of Jeju Island using Multiple Linear Regression of Geographic Spatial Data

지리 공간 자료의 다중회귀분석을 이용한 제주도 남측사면 용천수의 시기별 질산성 질소 농도 예측

  • Jung, Youn-Young (Groundwater department, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Koh, Dong-Chan (Groundwater department, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kang, Bong-Rae (Jeju Special Self-Governing Province Institute of Environmental Resources Research) ;
  • Ko, Kyung-Suk (Groundwater department, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Yu, Yong-Jae (Department of Geology and Earth Environmental Sciences, Chungnam National University)
  • 정윤영 (한국지질자원연구원 지하수연구실) ;
  • 고동찬 (한국지질자원연구원 지하수연구실) ;
  • 강봉래 (제주특별자치도 환경자원연구원) ;
  • 고경석 (한국지질자원연구원 지하수연구실) ;
  • 유용재 (충남대학교 지구환경과학부)
  • Received : 2011.01.19
  • Accepted : 2011.03.31
  • Published : 2011.04.28

Abstract

Nitrate concentrations in springs at the southern slope of Jeju Island were predicted using multiple linear regression (MLR) of spatial variables including hydrogeological parameters and land use characteristics. Springs showed wide range of nitrate concentrations from <0.02 to 86 mg/L with a mean of 20 mg/L. Spatial variables were generated for the circular buffer when the optimal buffer radius was assigned as 400 m. Selected regression models were tested using the p values and Durbin-Watson statistics. Explanatory variables were selected using the adjusted $R^2$, Cp (total squared error) and AIC (Akaike's Information Criterion), and significance. In addition, mutual linear relations between variables were also considered. Small portion of springs, usually <10% of total samples, were identified as outliers indicating limitations of MLR using circular buffers. Adjusted $R^2$ of the proposed models was improved from 0.75 to 0.87 when outliers were eliminated. In particular, the areal proportion of natural area had the greatest influence on the nitrate concentrations in springs. Among anthropogenic land uses, the influence of nitrate contamination is diminishing in the following order of orchard, residential area, and dry farmland. It is apparent quality of springs in the study area is likely to be controlled by land uses instead of hydrogeological parameters. Most of all, it is worth highlighting that the contamination susceptibility of springs is highly sensitive to nearby land uses, in particular, orchard.

제주도 남측사면에서 산악지역부터 해안지역에 걸쳐 분포하는 용천수에 대해 풍수기와 갈수기의 2회에 걸쳐 측정된 $NO_3$ 농도를 수해지질학적 인자 및 토지 이용 특성 인자를 포함하는 공간 변수들의 다중선형 회귀모형으로 예측하였다. 용천수의 $NO_3$ 농도는 평균 20 mg/L이며, <0.02~86 mg/L의 범위를 보여 인위적 오염의 정도가 매우 다양하다. 공간 변수는 용천수를 중심으로 원형 버퍼를 설정하여 추출하였으며, 수정결정계수 증가율과 원형 버퍼의 제한점을 고려하여 반경 400 m를 최적 범위로 설정하였다. 선택된 회귀 모형들은 p-값과 더빈-왓슨 통계치에 근거하여 모두 통계적으로 유의하였다. 설명변수는 수정결정계수, Cp (total squared error), AIC (Akaike's Information Criterion)등을 기준으로 선택하였으며 변수들의 유의성과 다중공선성을 확인하여 최적 회귀 모형을 제시하였다. 일부 용천수들은 이상치로 확인되었으나 전체 시료의 10%이내였으며, 이들은 원형 버퍼를 사용하는 다중회귀분석의 한계를 지시한다고 할 수 있다. 변수의 유의성 기준으로 선정된 최적 회귀 모형의 결정계수는 이상치 제거 전이 0.74-0.79, 제거 후가 0.86-0.87의 범위로 높은 설명력을 보여주었으며, 자연지역 면적 비율이 용천수의 $NO_3$ 농도에 가장 큰 영향력을 가지는 것으로 나타났다. 용천수 $NO_3$ 농도에 대한 인위적 토지이용의 영향력은 최적 버퍼 반경에서 두 조사 시기 모두 과수원 > 주거지역 > 밭의 순으로 나타났다. 이러한 결과는 제주도 남측사면 용천수의 수질이 수리지질학적 인자보다는 토지 이용 특성에 크게 좌우됨을 지시하며, 용천수의 오염 취약성이 주변의 지표 오염원, 특히 과수원 분포에 민감함을 보여준다.

Keywords

References

  1. Akaike, H. (1973) A new look at the statistical model identification, IEEE Trans. Automat. Control, v.19, p.716-723.
  2. Basnyat, P., Teeter, L.D., Flynn, K.M. and Lockaby, B.G. (1999) Relationships between landscape characteristics and nonpoint source pollutio2 inputs to coastal estuaries. Environmental Management, v.23, p.539- 549. https://doi.org/10.1007/s002679900208
  3. Bauder, J.W., Sinclair, K.N., and Lund, R.E., 1993, Physiograohic and land use characteristics associated with nitrate-nitrogen in montana groundwater, Journal of Environmental Quality, v.22, p.255-262.
  4. Brady, N.C. and Weil, R.R. (2002) The nature and properties of soils. 13th ed. Prentice Hall, Upper Saddle River, NY.
  5. Cheong, B.K., Chae, G.T., Koh, D.C., Ko, K.S. and Koo, M.H. (2008) A Study of Improvement for the Prediction of Groundwater Pollution in Rural Area: Application in Keumsan, Korea. Journal of KoSSGE., v.13, p.40-53.
  6. Eckhardt, D.A.V. and Stackelberg, P.E. (1995) Relation of ground-water quality to land use on Long Island New York. Ground water, v.33, p.1019-1033. https://doi.org/10.1111/j.1745-6584.1995.tb00047.x
  7. Gardner, K.K. and Vogel, R.M. (2005) Predicting Groud Water Nitrate Concentration from Land use. Ground Water, v.43, p.343-352. https://doi.org/10.1111/j.1745-6584.2005.0031.x
  8. Hamm, S.Y., Cheong, J.Y., Kim, M.J., Kim, I.S. and Hwang, H.S. (2004) Assessing Groundwater Vulnerability Using DRASTIC Method and Groundwater Quality in Changwon City. Korea Soc. Econ. Environ. Geol., v.37, p.631-645.
  9. Helsel, D.R. and Hirsch, R.M. (2002) Statistical Methods in Water Resources. USGS, Elsevier Science publishers B.V., The Netherlands, 522p.
  10. Hong, C.S., Han, J.H. and Kim, H.I. (2005) Variable Selection for Logistic Regression Model Using Adjusted Coefficients of Determination. The Korean Journal of Applied Statistics, v.18, p.435-443. https://doi.org/10.5351/KJAS.2005.18.2.435
  11. Jeju Provincial Government (2009) Statistical Yearbook of Jeju.
  12. Jeju Provincial Government (2010) Report on present condition of farming and stockbreeding. Jeju Provincial Agricultural Policy Department, 163p. (title translated).
  13. Jeju-do (1997) Comprehensive survey in middle mountain area of Jeju Island. Korea Research Institute for Human Settlements, 344p. (title translated).
  14. Jeju-do (1999) Water of Jeju, Spring. 392p. (title translated).
  15. Jeju-do and K-water (2003) Report on general survey of hydrogeology and groundwater resource(III). 425p. (title translated).
  16. Jun, D.C., Song, Y.S. and Han, S.I. (2010) Proposal of Models to Estimate the Coefficient of Permeability of Soils on the Natural Terrain considering Geological Conditions. Korean Society of Engineering Geology, v.20, p.35-45.
  17. Jung, Y.Y., Koh, D.C., Yu, Y.J. and Ko, K.S. (2010) Analysis of groundwater flow systems for springs in the southern slope of Jeju Island using hydrogeochemical parameters. Journal of the Geological Society of Korea, v.46, p.253-273.
  18. Kang, T.S. and Um, J.G. (2007) Risk Assessment of the Road Cut Slopes in Gyeoungnam based on Multiple Regression Analysis. Korean Society of Engineering Geology, v.17, p.393-404.
  19. Kim, C.R. (2000) The SAS statistical box, Data-Plus press, Korea, 592p. (title translated).
  20. Kim, E.Y., Koh, D.C., Ko, K.S. and Yeo, I.W. (2008) Prediction of Nitrate Contamination of Groundwater in the Northern Nonsan area Using Multiple Regression Analysis. Journal of KoSSGE., v.13, p.57-73.
  21. Kim, K.H., Lee, M.H., Lee, G.W., Kim, Y.P., Youn, Y.H. and Oh, J.M. (2002) Observations of aerosol-bound ionic compositions at Cheju Island, Korea. Chemosphere, v.48, p.317-327. https://doi.org/10.1016/S0045-6535(02)00098-X
  22. Kim, S.U. and Lee, K.S. (2008) Regional Low Flow Frequency Analysis Using Bayesian Multiple Regression. Jour. Korea Resources Association, v.41, p.325-340. https://doi.org/10.3741/JKWRA.2008.41.3.325
  23. Kleinbaum, D.G., Kupper, L.L. and Muller, K.E. (1988) Applied regression analysis and other multivariate methods (2nd ed.). PWS Publishing Co., Boston, 366p.
  24. Kloiber, S.M. (2006) Estimating nonpoint source pollution for the twin cities metropolotan area using landscape variables. Water, Air, and Soil Pollution, v.172, p.313-335. https://doi.org/10.1007/s11270-006-9083-4
  25. Koh, D.C., Chae, G.T., Yoon, Y.Y., Kang, B.R. Koh, K.W. and Park, K.H. (2009) Baseline geochemical characteristics of groundwater in the mountainous area of Jeju Island, South Korea: Implications for degree of mineralization and nitrate contamination. Journal of Hydrology, v.376, p.81-93. https://doi.org/10.1016/j.jhydrol.2009.07.016
  26. Koh, D.C., Chang, H.W., Lee, K.S., Ko, K.S., Kim, Y. and Park, W.B. (2005) Hydrogeochemistry and environmental isotopes of groudwater in Jeju volcanic island, Korea: implications for nitrate contamination. Hydro. Process, v.19, p.2225-2245. https://doi.org/10.1002/hyp.5672
  27. Koh, D.C., Ko, K.S., Kim, Y.J., Lee, S.G. and Chang, H.W. (2007) Effect of agricultural land use on the chemistry of groundwater from basaltic aquifers, Jeju Island, South Korea. Hydrogeology Journal, v.15, p.727-743. https://doi.org/10.1007/s10040-006-0142-0
  28. Koh, K.W. (1997) Characteristics of the groundwater and hydrogeologic implications of the Seoguipo Formation in Cheju Island. Doctoral thesis of Pusan National University, 325p. (title translated).
  29. Kolpin, D.W. (1997) Agricultural chemicals in groundwater of the Midwestern United States: relations to land use. Journal of Environmental Quality, v.26, p.1025-1037.
  30. Korea Institute of Geoscience and Mineral Resources (KIGAM) (2008) Integrated Analysis of Groundwater Occurrence in Jeju. 365p.
  31. Lee, B.J., Moon, S.H., Park, K.H., Koh, D.C. and Koh, K.W. (2002) Htdrogeochemical characteristics of the spring waters in Jeju. Journal of the Geological Society of Korea, v.38, p.421-439.
  32. Lee, S.R., Kim, Y.S., Kim, N.J. and Ahn, K.H. (2008) Analysis of Relationships Between Topography/Geology and Groundwater Yield Properties at Pohang using GIS. Korea Soc. Econ. Environ. Geol., v.41, p.115-131.
  33. Liao, J.G. and McGee, D. (2003) Adjusted Coefficients of Determination for Logistic Regression. The American Statistician, v.57, p.161-165. https://doi.org/10.1198/0003130031964
  34. Mallows, C.L. (1973) Some Comments on Cp. Technometrics, v.15, p.661-675.
  35. McLay, C.D.A., Dragten, R., Sparling, G. and Selvarajah, N. (2001) Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environmental Pollution, v.115, p.191-204. https://doi.org/10.1016/S0269-7491(01)00111-7
  36. Nolan, B.T. (2001) Relating nitrogen sources and aquifer susceptibility to nitrate in shallow ground waters of the United States. Ground Water, v.39, p.290-299. https://doi.org/10.1111/j.1745-6584.2001.tb02311.x
  37. Nolan, B.T., Hitt, K.J. (2006) Vulnerability of shallow groundwater and drinking-water wells to nitrate in the United States. Environmental Science and Technology, 40 (24), p.7834-7840. https://doi.org/10.1021/es060911u
  38. Panagopoulos, G.P., Antonakos, A.K. and Lambrakis, N.J. (2005) Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical method and GIS. Hydrogeology Journal, v.14, p.894-911.
  39. Park, K.H., Cho, D.L., Kim, Y.B., Kim, J.C., Cho, B.W., Jang, Y.N., Lee, B.J., Lee, S.R., Son, B.K. Cheon, H.Y., Lee, H.Y. and Kim, Y.U. (2000) Geologic report of the SeogwipoHahyori Sheet (1:50,000). Jeju Provincial Government, 163p.
  40. Song, Y.C., Koh, Y.K. and U, J.G. (1999) Estimation of Nitrate Sources in Cheju Island Groundwater using $\delta^{15}$N. Jour of the Korean Society of Groundwater Environment, v.6, p.107-110.
  41. Thornton, G.J.P. and Dise, N.B. (1998) The influence of catchment characteristics, agricultural activities and atmospheric deposition on the chemistry of small streams in the English Lake District. Science of the Total Environment, v.216, p.63-75. https://doi.org/10.1016/S0048-9697(98)00138-7
  42. Won, J.H., Lee, J.Y. and Kim, J.W. (2006) Groundwater occurrence on Jeju Island, Korea. Hydrogeology Journal, v.14, p.532-547. https://doi.org/10.1007/s10040-005-0447-4
  43. Won, J.S., Woo, N.C. and Kim, Y.J. (2004) Analysis Influential Factors on Nitrate Distribution in Ground Water in an Urbanizing Area using GIS. Korea Soc. Econ. Environ. Geol., v.37, p.647-655.
  44. Youn, J.S. and Park, S.W. (1998) Hydrochemical Characteristics of Spring Water in Cheju Island. Journal of the Korean Society of Groundwater Environment, v.5, p.66-79.

Cited by

  1. Characterization of Nitrate Contamination and Hydrogeochemistry of Groundwater in an Agricultural Area of Northeastern Hongseong vol.18, pp.3, 2013, https://doi.org/10.7857/JSGE.2013.18.3.033
  2. Flow paths and mixing properties of groundwater using hydrogeochemistry and environmental tracers in the southwestern area of Jeju volcanic island vol.432-433, 2012, https://doi.org/10.1016/j.jhydrol.2012.02.030