• Title/Summary/Keyword: volcanic aquifer

Search Result 27, Processing Time 0.022 seconds

Environmental Characteristics of Natural Radionuclides in Groundwaters in Volcanic Rock Areas: Korea (국내 화산암 지역 지하수 중 자연방사성 물질에 대한 환경 특성)

  • Jeong, Do Hwan;Kim, Moon Su;Ju, Byoung Kyu;Hong, Jung Ki;Kim, Dong Su;Kim, Hyun Koo;Kim, Hye Jin;Park, Sun Hwa;Han, Jin Seok;Kim, Tae Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.36-45
    • /
    • 2013
  • We analyzed natural radionuclides in 80 wells in volcanic rock areas and investigated environmental characteristics. Uranium and radon concentrations ranged from ND to $9.70{\mu}g/L$ (median value: 0.21) ${\mu}g/L$, 38~29,222 pCi/L (median value: 579), respectively. In case of gross-${\alpha}$, 26 samples exceeded MDA (minimum detectable activity, < 0.9 pCi/L) value and the activity values ranged from 1.05 to 8.06 pCi/L. The radionuclides concentrations did not exceed USEPA MCL (maximum contaminant level) value of Uranium ($30{\mu}g/L$) and gross-${\alpha}$ (15 pCi/L). But Rn concentrations in 4 samples exceeded USEPA AMCL (Alternative maximum contaminant level, 4,000 pci/L) and one of them showed a significantly higher value (29,222 pCi/L) than the others. The levels of uranium concentrations in volcanic rock aquifer regions were detected in order of andesite, miscellaneous volcanic rocks, rhyolite, basalt aquifer regions. Radon, however, was detected in order of miscellaneous volcanic rocks, rhyolite, andesite, basalt aquifer regions. The correlation coefficient between uranium and radon was r = 0.45, but we found that correlations of radionuclides with in-situ data or major ions were weak or no significant. The correlation coefficient between the depth of wells and uranium concentrations was a slightly higher than that of depth of wells and radons. Radionuclide concentrations in volcanic rock aquifers showed lower levels than those of other rock aquifers such as granite, metamorphic rock aquifers, etc. This result may imply difference of host rock's bearing-radioactive-mineral contents among rock types of aquifers.

The Practical Use of the Productive Aquifer Systems as a Source of a Renewable Thermal Energy and Local Water Works (지방상수도의 신규 수원과 재생에너지원으로서 고산출성 대수층의 활용)

  • Hahn, Jeongsang
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.4
    • /
    • pp.16-25
    • /
    • 2018
  • The Quaternary volcanic rocks, clastic sedimentary rocks of Kyongsang System, and carbonate rocks of Joseon and Pyongan System are known as good productive and potential aquifer systems in South Korea. National Groundwater Informaton Mangement and Service System (GIMS) indicates that the exploitable, sustainable, and current use of groundwater are about 18.8, 12.9, and $3.73billion\;m^3/a$, respectively. The rest amount ($9.1billion\;m^3/a$) can still be used for an additional water supply source. Therefore. comprehensive groundwater survey work comprising hydrogeological mapping, subsurface investigation and quantitative aquifer test etc. are highly required to establish rational groundwater management strategy.

포항지역 지열수의 수리지구화학적 특성

  • 고동찬;염병우;하규철;송윤호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.453-454
    • /
    • 2004
  • Hydrogeochemical and isotopic characteristics were investigated for groundwater of Tertiary basin in southeastern part of Korea where deep drilling is in progress for geothermal investigation. According to geology, aquifer was distinguished as alluvial, tertiary sedimentary bedrock (bedrock groundwater), and fractured volcanic rock (deep groundwater). Groundwater of each aquifer is distinctively separated in Eh-pH conditions and concentrations of Cl, F, B and HCO$_3$. Deep groundwater has very low level 3H and 14C whereas alluvial groundwater has those of recent precipitation level. However one of deep groundwater show mixed characteristics in terms of hydrochemistry which indicates effect of pumping. Deep groundwater have temperature of 38 to 43$^{\circ}C$ whereas bedrock and alluvial groundwater have temperature less than 2$0^{\circ}C$. Fractured basement rock aquifer has different hydrogeologicalsetting from bedrock and alluvial aquifer considering hydrogeochemical and isotopic characteristics, and temperature.

  • PDF

다중 환경추적자를 이용한 제주도 지하수 유동 및 수질 특성 분석

  • 고동찬;김용재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.138-141
    • /
    • 2004
  • The environmental tracers tritium/helium-3 (3H/3He) and chlorofluorocarbons (CFCs) were investigated in ground water from Jeju Island, Korea, a basaltic volcanic island. The apparent 3H/3He and CFC-12 ages were in relatively good agreement in samples with low concentrations of terrigenic He. Ground water mixing was evaluated by comparing 3H and CFC-12 concentrations with mixing models, which distinguished old water with negligible 3H and CFC-12, young water with piston flow, and binary mixtures of the two end members. The ground water CFC-12 age is much older in water from wells completed in confined zones of the hydro-volcanic Seoguipo formation in coastal areas than in water from the basaltic aquifer. Comparison of major element concentrations in ground water with the CFC-12 age shows that nitrate contamination processes contribute more solutes in young water than are derived from water-rock interactions in non-contaminated old water. Chemical evolution of ground water resulting from silicate weathering in basaltic rocks reaches the zeolite-smectite phase boundary. The calcite saturation state of ground water increased with the CFC-12 apparent (piston flow) age. In agricultural areas, the temporal trend of nitrate concentration in ground water was consistent with the known history of chemical fertilizer use on Jeju Island, but the response of nitrate concentration in ground water to nitrogen inputs follows an approximate 10-year delay. Based on mass balance calculations, it was estimated that about 40% of the nitrogen applied by fertilizers reached the water table and contaminated ground water resources when the fertilizer use was at the highest level.

  • PDF

Evaluation of Hydrogeological Characteristics of Deep-Depth Rock Aquifer in Volcanic Rock Area (화산암 지역 고심도 암반대수층 수리지질특성 평가)

  • Hangbok Lee;Chan Park;Junhyung Choi;Dae-Sung Cheon;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.3
    • /
    • pp.231-247
    • /
    • 2024
  • In the field of high-level radioactive waste disposal targeting deep rock environments, hydraulic characteristic information serves as the most important key factor in selecting relevant disposal sites, detailed design of disposal facilities, derivation of optimal construction plans, and safety evaluation during operation. Since various rock types are mixed and distributed in a small area in Korea, it is important to conduct preliminary work to analyze the hydrogeological characteristics of rock aquifers for various rock types and compile the resulting data into a database. In this paper, we obtained hydraulic conductivity data, which is the most representative field hydraulic characteristic of a high-depth volcanic bedrock aquifer, and also analyzed and evaluated the field data. To acquire field data, we used a high-performance hydraulic testing system developed in-house and applied standardized test methods and investigation procedures. In the process of hydraulic characteristic data analysis, hydraulic conductivity values were obtained for each depth, and the pattern of groundwater flow through permeable rock joints located in the test section was also evaluated. It is expected that the series of data acquisition methods, procedures, and analysis results proposed in this report can be used to build a database of hydraulic characteristics data for high-depth rock aquifers in Korea. In addition, it is expected that it will play a role in improving technical know-how to be applied to research on hydraulic characteristic according to various bedrock types in the future.

Characteristics of Aquifer System and Change of Groundwater Level due to Earthquake in the Western Half of Jeju Island (제주도 서반부의 대수층 체계와 지진에 의한 지하수위 변동 특성)

  • Ok, Soon-Il;Hamm, Se-Yeong;Kim, Bong-Sang;Cheong, Jae-Yeol;Woo, Nam-Chil;Lee, Soo-Hyoung;Koh, Gi-Won;Park, Yun-Seok
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.359-369
    • /
    • 2010
  • This study characterizes aquifer system and hydrogeologic property in the western half of Jeju Island where wells were drilled for regional water supply in three sub-areas (northwestern, western, and southwestern sub-areas). The aquifer system of the northwestern sub-area is largely composed of upper high-permeability layer, upper low-permeability layer, lower high-permeability layer, and lower low-permeability layer. On the other hand, the aquifer systems of the western and southwestern sub-areas are mostly composed of upper low-permeability layer, high-permeability layer, and lower low-permeability layer. Transmissivity and specific capacity decrease in the order of the northwestern, western, and southwestern sub-areas. The relationship between specific capacity and the top surface of tuff is negative with a high correlation coefficient of -0.848, indicating that the tuff acts as the bottom of the aquifer. Groundwater level change due to the 2004 Sumatra earthquake is an average of 23.74 cm in the northwestern sub-area, an average of 9.48 cm in the western sub-area, and none in the southwestern sub-area. Further, it is found that groundwater change due to the earthquake has a positive relationship with transmissivity and specific capacity.

Understanding Hydrogeologic Characteristics of a Well Field of Pyosun in Jeju Volcanic Island of Korea

  • Lee, Jin-Yong;Lee, Gyu-Sang;Song, Sung-Ho
    • Journal of the Korean earth science society
    • /
    • v.29 no.5
    • /
    • pp.396-407
    • /
    • 2008
  • Hydrogeologic properties of a well field around middle mountainous areas in Pyosun, Jeju volcanic island were examined based on water level monitoring, geologic logging and pumping test data. Due to the alternating basaltic layers with varying permeability in the subsurface, it is difficult to analyze the hydraulic responses to artificial pumping and/or natural precipitation. The least permeable layer, detrital materials with clay, is found at a depth of 200 m below surface, but it is not an upper confining bed for lower main aquifer. Nevertheless, this layer may serve as a natural barrier to vertical percolation and to contaminant migration. Water levels of the production wells are dominantly affected by pumping frequently, while those of the remote observation wells are controlled by ambient precipitation. Results of pumping tests revealed a possible existence of horizontal anisotropy of transmissivity. However, some results of this study include inherent limitations enforced by field conditions such as the consistent of groundwater production and the set of time periods for the cessation of the pumping prior to pumping tests.

Geochemical Characteristics of Groundwater in Korea with Different Aquifer Geology and Temperature -Comparative Study with Granitic Groundwater (대수층 지질 및 온도에 따른 국내 지하수의 지구화학적 특징 -화강암질암내 지하수와의 비교연구)

  • 이종운;전효택;전용원
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.4
    • /
    • pp.212-222
    • /
    • 1997
  • Geochemistry of metasedimentary groundwaters and spar waters has been studied in comparison with that of granitic groundwaters in Korea. Metasedimentary groundwaters show $Ca^{2+]$-${HCO_3}^-$ type at depth and low sodium concentrations compared with granitic groundwaters, which is due to the lack of plagioclase in their aquifer mineralogy and, therefore, the predominant reaction of calcite dissolution. According to factor analysis, metasedimentary groundwaters at 100~300 m depth are represented by 1) the dissolution of calcite and Mg-carbonates, 2) transformation of kaolinite to illite, and 3) the presence of sodium as not the product of plagioclase dissolution but a artificial pollutant. Discriminant function between the granitic and metasedimentary groundwaters shows a good discriminating ability with 81.8%, and groundwaters of volcanic aquifer, which has abundant plagioclase, are included in the granitic group by this function. Spa water samples show the result of active water-rock interaction due to high temperature.

  • PDF

Standard Procedures and Field Application Case of Constant Pressure Injection Test for Evaluating Hydrogeological Characteristics in Deep Fractured Rock Aquifer (고심도 균열암반대수층 수리지질특성 평가를 위한 정압주입시험 조사절차 및 현장적용사례 연구)

  • Hangbok Lee;Chan Park;Eui-Seob Park;Yong-Bok Jung;Dae-Sung Cheon;SeongHo Bae;Hyung-Mok Kim;Ki Seog Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.348-372
    • /
    • 2023
  • In relation to the high-level radioactive waste disposal project in deep fractured rock aquifer environments, it is essential to evaluate hydrogeological characteristics for evaluating the suitability of the site and operational stability. Such subsurface hydrogeological data is obtained through in-situ tests using boreholes excavated at the target site. The accuracy and reliability of the investigation results are directly related to the selection of appropriate test methods, the performance of the investigation system, standardization of the investigation procedure. In this report, we introduce the detailed procedures for the representative test method, the constant pressure injection test (CPIT), which is used to determine the key hydrogeological parameters of the subsurface fractured rock aquifer, namely hydraulic conductivity and storativity. This report further refines the standard test method suggested by the KSRM in 2022 and includes practical field application case conducted in volcanic rock aquifers where this investigation procedure has been applied.

A Study on Hydrogeological Characteristics of Deep-Depth Rock Aquifer by Rock Types in Korea (국내 암종별 고심도 암반대수층 수리지질특성 연구)

  • Hangbok Lee;Chan Park;Dae-Sung Cheon;Junhyung Choi;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.374-392
    • /
    • 2024
  • In order to successfully select a site for deep geological disposal of high-level radioactive waste, it is important to perform the stepwise approach along with the systematic selection and survey of evaluation parameters of geological environmental characteristics suitable for the domestic geological environment. In this study, we evaluated the characteristics of hydraulic conductivity, which is considered the most important evaluation parameter in the field of hydrogeology, targeting a deep-depth rock aquifer where actual disposal facilities are expected to be located. In particular, for the first time in Korea, we obtained in-situ pressure-flow data by directly conducting hydraulic tests in boreholes at depths ranging from 500 m to 750 m in various rock types distributed in Korea (granite/volcanic rock/gneiss/mudstone). And we derived hydraulic conductivity values by rock types and depth using verified analytical methods. For this purpose, precision hydraulic testing equipment developed in-house through this study was used, and detailed investigation procedures based on standard test methods were applied to field tests. As a result of the analysis, the average hydraulic conductivity value was found to be in the range of 10-9 m/s in all granite/volcanic rock/gneiss areas. In the mudstone area, an average hydraulic conductivity value of 10-11 m/s was derived, which was about 100 times (2 orders of magnitude) lower than that of the fractured rock aquifers. Moreover, permeability tended to slightly decrease with depth in fractured rock aquifers (granite and volcanic rock areas) containing many rock fractures. The gneiss area tended to have large local differences in permeability according to the composition of the stratum and the development of fracture zones rather than depth. In mudstone areas with weak fracture development, there was no significant variation in rock permeability according to depth. The hydraulic conductivity results by various rock types and depth presented in this study are expected to be utilized in building a foundational database for the site selection, design, and construction of disposal facilities in Korea.