• Title/Summary/Keyword: 다이어프램형

Search Result 4, Processing Time 0.016 seconds

Development of a diaphragm type actuator (다이어프램형 방식의 파일럿 액추에이터 개발)

  • Lee, Joongyoup;Jeong, Daeseong;Han, Sangyeop
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.160-166
    • /
    • 2014
  • The shutoff valve of a Liquid Rocket Engines (LRE) controls the flow of propellant between turbo-pump and combustion devices of LRE using pilot pressure and spring force. The shutoff valve is closed when the pilot pressure is removed from the diaphragm type actuator. During designing process of life cycle is when should be analyzed according to the characteristics of forces with respect to the opening and closing of diaphragm actuator. A valve has been designed to adjust the control pressure which is required to open a poppet and to determine the working fluid pressure at which a valve starts to close. During flow capacity test under room temperature as a part of life cycle tests, the leakage in diaphragm was occurred due to the leakage of sheet welding sections. The operating cycle of the diaphragm type actuator is about 61 times with 22 MPa of pilot pressure.

A Study on Flow Rate Characteristic and Dynamic Performance on Diaphragm Solenoid Valve (다이어프램형 밸브의 유량특성과 동적성능에 관한 연구)

  • Jeong, C.S.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.3
    • /
    • pp.27-33
    • /
    • 2013
  • Solenoid valve has used in various industrial field extensively. A solenoid valve has different size, shape and method of operation accordantly to industrial field. Many researchers study on kinds of solenoid valve such as flow rate, dynamic, magnetic field, valve shape and operating method. But the flow rate characteristic and dynamic response time performance on the diaphragm valve are not studied. This paper describes the flow rate characteristic and dynamic response time performance on the diaphragm valve. At first, the diaphragm valve is simulated in AMESim simulation tool. AMESim model found that an effect of valve performance depends on parameter. The parameter is the diaphragm orifice area. And the performance test bench confirms the effect in this parameter. Finally, it finds out the flow rate characteristic and dynamic response time performance on the diaphragm valve.

Error Compensation due to Environmental Temperature for Diaphragm-Type Pressure Sensor (다이어프램형 압력센서에서 주변 온도에 의한 오차 보상)

  • Yun, Dae Jhonng;Ahn, Jung Hwan;Lee, Gil Seung;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.177-181
    • /
    • 2019
  • Pressure sensors are used in various industries such as automobiles, airplanes, medical equipment, and coolers. Even if the ambient temperature changes, the measurement is reliable and stable. In this study a diaphragm-type pressure sensor was used to derive a temperature-compensated pressure estimation equation for accurate pressure measurement at $100^{\circ}C$ and $-40^{\circ}C$. To understand the characteristics of the pressure sensor diaphragm with respect to temperature and pressure, experiments were conducted in temperature-variable chamber using FEM analysis to confirm that the influence of temperature effect was nonlinear. Based on the experimental results, a nonlinear method for calculating the pressure by compensating for the error due to temperature was derived. The calculated pressure value is lower than 0.5 % at low and high temperatures, and lower than 0.4 % at $22^{\circ}C$, thereby eliminating the effect of temperature.