• Title/Summary/Keyword: 다분야공학

Search Result 19, Processing Time 0.019 seconds

An Adaptive Decomposition Technique for Multidisciplinary Design Optimization (다분야통합최적설계를 위한 적응분해기법)

  • Park, Hyeong Uk;Choe, Dong Hun;An, Byeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.18-24
    • /
    • 2003
  • The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative sybcycles. Previous researches predifined the numbers of design processes in groups, but these group sizes should be determined optimally to balance the computing time of each groups. This paper proposes adaptive decomposition method, which determines the group sizes and the order of processes simultaneously to raise design efficiency by expanding the chromosome of the genetic algorithm. Finally, two sample cases are presented to show the effects of optimizing the sequence of processes with the adaptive decomposition method.

Development of System Analysis for the Application of MDO to Crashworthiness (자동차 충돌문제에 MDO를 적용하기 위한 시스템 해석 방법 개발)

  • 신문균;김창희;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.210-218
    • /
    • 2003
  • MDO (multidisciplinary design optimization) technology has been proposed and applied to solve large and complex optimization problems where multiple disciplinaries are involved. In this research. an MDO problem is defined for automobile design which has crashworthiness analyses. Crash model which are consisted of airbag, belt integrated seat (BIS), energy absorbing steering system .and safety belt is selected as a practical example for MDO application to vehicle system. Through disciplinary analysis, vehicle system is decomposed into structure subspace and occupant subspace, and coupling variables are identified. Before subspace optimization, values of coupling variables at given design point must be determined with system analysis. The system analysis in MDO is very important in that the coupling between disciplines can be temporary disconnected through the system analysis. As a result of system analysis, subspace optimizations are independently conducted. However, in vehicle crash, system analysis methods such as Newton method and fixed-point iteration can not be applied to one. Therefore, new system analysis algorithm is developed to apply to crashworthiness. It is conducted for system analysis to determine values of coupling variables. MDO algorithm which is applied to vehicle crash is MDOIS (Multidisciplinary Design Optimization Based on Independent Subspaces). Then, structure and occupant subspaces are independently optimized by using MDOIS.

Aluminum Space Frame B.I.W. Optimization Considering Multidisciplinary Design Constraints (다분야 설계 제약 조건을 고려한 알루미늄 스페이스 프레임 차체의 최적 설계)

  • Kim Bum-Jin;Kim Min-Soo;Heo Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • This paper presents an ASF (Aluminum Space Frame) BIW optimal design, which minimizes the weight and satisfies multi-disciplinary constraints such as the static stiffness, vibration characteristics, low-speed crash, high-speed crash and occupant protection. As only one cycle CPU time for all the analyses is 12 hours, the ASF design having 11-design variable is a large scaled problem. In this study, ISCD-II and conservative least square fitting method is used for efficient RSM modeling. Then, ALM method is used to solve the approximate optimization problem. The approximate optimum is sequentially added to remodel the RSM. The proposed optimization method used only 20 analyses to solve the 11-design variable design problem. Also, the optimal design can reduce the] $15\%$ of total weight while satisfying all of the multi-disciplinary design constraints.

Multidisciplinary Design Optimization of Vehicle Front Suspension System Using PIDO Technology (PIDO 기술을 이용한 차량 전륜 현가계의 다분야통합최적설계)

  • Lee, Gab-Seong;Park, Jung-Min;Choi, Byung-Lyul;Choi, Dong-Hoon;Nam, Chan-Hyuk;Kim, Gi-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • Multidisciplinary design optimization (MDO) for a suspension component of the vehicle front suspension was performed in this research. Shapes and thicknesses of the subframe were optimized to satisfy multi-disciplinary design requirements; weight, fatigue, crash, noise, vibration, and harshness (NVH), and kinematic and compliance (K&C). Analyses procedures of the performance disciplines were integrated and automated by using the process integration and design optimization (PIDO) technique, and the integrated and automated analyses environments enabled various types of analytic design methodologies for solving the MDO problem. We applied an approximate optimization technique which involves sequential sampling and metamodeling. Since the design variables for thicknesses should be dealt as discrete variables. the evolutionary algorithm is selected as optimization technique. The MDO problem was formulated three types of problems according to the order of priorities among the performance disciplines, and the results of MDO provided design alternatives for various design situations.

Automation of Fatigue Durability Analysis of Welded Bogie Frame using Process Integration Tool (프로세스 통합도구를 활용한 용접대차프레임 피로내구해석의 자동화)

  • Bang Je-Sung;Han Seung-Ho;Rim Chae-Whan;Lee Kwang-Ki;Lee Kwang-Soon;Song See-Yeob
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.5
    • /
    • pp.425-433
    • /
    • 2005
  • For the design of welded bogie frame, the concept of multidisciplinary engineering activities, i.e. static, fatigue and dynamic analysis, has been applied, in which the sharing of design parameters related with each analysis and the collaboration of the working parts in charge should be fulfilled. However, in spite of these necessities, the multi-disciplinary engineering activities couldn't be performed in practice due to tack of the automation of the required analysis. In this paper, an automation of fatigue durability analysis of welded bogie frame according to UIC-Code was proposed by using the Model Center, which enables to integrate the several tools for the fatigue durability analysis, i.e. I-DEAS, ANSYS and BFAP, and to perform iterative analysis works in relation to the geometrical change of transom support bracket. Besides, the wrapping programs to control I/O-data and interfaces of these tools were developed. The developed automation technique brings not only significant decreasing man-hour required in the durability analysis, but also providing a platform of the multidisciplinary engineering activities.

트라이 볼로지(Tribology) 관점에서 고찰한 표면관련 기술의 최근동향

  • 권오관
    • Tribology and Lubricants
    • /
    • v.3 no.1
    • /
    • pp.5-11
    • /
    • 1987
  • 트라이볼로지는 상대운동을 하면서 서로 영향을 미치는 표면 및 이와 관련된 제반 문제와 실제 응용에 관한 과학과 기술로 정의되고 있다. 이를 산업계에서 익히 사용하고 있는 용어로 풀이하면 마모, 마찰 및 윤활을 기본 주제로 하는 공학이라고 설명되며, 그 결과는 기계 및 장치의 보수유지비 절감, 생산손실 감소, 에너지 소비 절감등의 직접적인 경제적 효과로 나타난다. 기술문명이 급속히 발달함에 따라 재료 소비량 절감 및 에너지 절감은 중요한 과제로 부각되었으며, 특히 산업계에 있어서는 생산단가와 직결되기 때문에 트라이볼로지 기술은 각 나라에서 필수적인 연구과제로 기술개발에 박차를 가하고 있다. 트리아볼로지의 대상이되는 상대 운동을 하는 부분에서는 여러가지 복합적인 현상이 발생하기 때문에 물리, 금속, 화학, 기계등의 공동 다분야 연구를 필요로하게 된다. 여기서는 상대운동 부위에서 나타나는 물리적 현상을 개괄적으로 살펴보고, 이 중 마모방지 대책을 위한 표면처리 기술에 대하여 고찰하고저 한다.

MDO-Based Design Collaboration (MDO 기반 협력설계 시스템)

  • Choi, Young;Park, Jin-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.142-150
    • /
    • 2003
  • MDO is one of the efficient methods for huge and multi -functional system design. This paper describes a design collaboration framework with MDO in networked design environment. A prototype of web -based integrated design system was implemented to show sharing and exchange of models and analysis information between MDO modules and collaborative design stations. Server System consists of MDO modules for optimization and modeling module for 3D modeling operation. Client system provide user with graphic interface for shape modeling and system operation. We believe that the proposed approach can be extended to solve real complex multidisciplinary design problems.

Web Service-Based Integrated Design Framework (웹 서비스 기반의 통합 설계 프레임워크)

  • Jang Won-Seok;Kim Kwang-Sik;Jeong Karp-Joo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.187-189
    • /
    • 2006
  • 오늘날 공학 분야에서 한 분야에서만 이뤄지던 연구가 다분야 통합 연구로 바뀌어 가고 있다. MDO(Multi-Disciplinary Optimization) 프레임워크는 각 분야의 설계 도구들 간의 데이터 공유로 효율적 관리를 위한 기술과 여러 분야가 분산된 환경 하에서 병렬로 작업할 수 있는 컴퓨팅 환경을 말한다. 기존의 MDO 프레임워크는 여러 분야의 설계 도구들을 통합 관리하는 표준 인터페이스가 없고 이것들의 작업 흐름을 자동으로 통합 관리할 환경이 없다는 문제점이 있다. 본 논문에서는 웹 서비스를 사용하여 각 설계도구 간의 표준 인터페이스를 제공하고, 워크플로우를 사용하여 이것들을 자동으로 통합 관리하는 웹 서비스 기반 통합 설계 프레임워크를 구현한다.

  • PDF

Development of Computational Science Simulation Management Program in Heterogeneous Computing Environments (이종 컴퓨팅 환경에서의 계산과학 시뮬레이션 관리 프로그램 개발)

  • Byun, Hee-Jung;Yu, Jung-Lok
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.8
    • /
    • pp.9-17
    • /
    • 2018
  • Heterogeneous high performance computing systems are gaining acceptance as the environments for computational scientific simulations of various application fields. Those computing systems, however, have been mostly used with the legacy consoles, resulting in the severe decrement of accessibility and usability of heterogeneous computing assets. To solve this problem, this paper presents the design and implementation of web-based computational science simulation management program. The proposed program provides fundamental primitives including user authentication, data management, physical/virtual computing resource management, job management, etc. that can be used to manage different kinds of simulations efficiently, and also offers highly extensible feature through a modular plug-in architecture. We also present the best practical examples of applications (e.g., scientific simulation education and bio-medical) to confirm our program's effectiveness.