이차형식 통계량의 분포함수에 대한 연구는 주로 다변량 정규분포의 가정하에서 진행되어 왔다. 최근 다변량 정규분포를 포함하는 다변량 왜정규분포에 대한 연구가 활발하다. 본 논문에서는 다변량 왜정규분포의 가정하에서 이차형식 통계량의 분포함수에 대한 근사를 다루었다. 근사의 방법으로는 소표본에서도 정확도가 뛰어난 근사법으로 알려진 안장점근사를 사용하였으며, 모의실험을 통해 그 정도를 확인하였다.
다중 치우침 모수벡터를 가진 다변량 치우친 정규분포 (MSNMix)를 EM 알고리즘으로 적합하려면 E-step에서 다변량 절단 정규분포의 적률과 확률을 계산해야 하는데 이것은 매우 큰 계산 시간을 요구한다. 그래서 비대칭 자료를 적합하는데 흔히 단순 치우침 모수를 가진 모형을 적용한다. 이 모형은 단변량 처리방식으로 적합하는 것이 가능하기 때문에 처리속도가 매우 빠르다. 그러나 단순 치우침 모수를 적용하는 것은 응용에서 비현실적인 경우가 많다. 본 논문에서는 다중 치우침 모수를 가지는 MSNMix의 근사적 추정법을 제안하는데, 이 방법은 단변량 처리방식이 적용되므로 향상된 처리속도를 보장한다. 그리고 제안된 방법의 실효성을 보이기 위해 몇 가지 실험 결과를 제공한다.
Fattorini(1986)의 통계량은 Shapiro와 Wilk의 일변량 정규분포를 위한 검정통계량을 다변량으로 확장한 것이다. 본 논문에서는 Kim과 Bickel(2003)에서 제안한 이변량 정규분포를 위한 검정통계량을 Fattorini(1986)의 방법을 이용하여 이변량 이상인 경우에도 실제적으로 사용가능하도록 일반화하였다. 제안된 통계량은 Fattorini(1986) 통계량의 근사통계량으로 생각할 수 있으며 표본의 크기가 클 때도 사용가능하다.
다변량 자료의 분포함수를 알고 있거나 추정할 수 있으면 다변량 경험분포함수를 정의할 수 있다. 이변량인 경우에는 계단그림과 분위그림을 사용하여 경험분포함수를 시각화할 수 있는데, 본 연구에서는 다변량인 경우에 경험분포함수를 정사각형에 표현할 수 있는 다변량 경험분포그림을 제안하였다. 여러 종류의 다변량 정규분포와 특정한 분포에 대하여 경험분포그림을 작성하고 특징을 살펴보니, 다양한 분산공분산행렬을 포함된 분포함수에 따라 경험분포그림이 민감하게 반응하는 것을 탐색하였다. 이를 바탕으로 경험분포함수를 구할 때 가정한 다변량 분포함수의 적합도 검정방법을 제안하였다. 대표적인 다섯 종류의 적합도 검정방법을 사용하고, 다양한 분포함수들에 대하여 각각의 검정통계량 기각역을 구하였다. 본 연구에서 얻은 기각역은 문헌에서 구할 수 있는 기각역과 큰 차이가 없음을 발견하였다. 그러므로 본 연구에서 제안한 적합도 검정방법을 문헌에서 제시한 기각역으로 쉽게 사용할 수 있는 장점이 있다.
Communications for Statistical Applications and Methods
/
제19권3호
/
pp.345-358
/
2012
표본선택 모형을 최우추정법으로 추정할 때 오차항의 분포를 제대로 가정하는 것이 매우 중요하다. 표본선택 모형의 선택 방정식과 본 방정식의 오차항 분포를 일반적으로 이변량 정규분포로 가정하지만, 이 가정이 오차항의 실제 분포를 과도하게 제약할 가능성이 있다. 본 연구는 표본선택 모형의 오차항 분포로 $S_U$-정규분포를 도입한다. $S_U$-정규분포는 분포의 비대칭성과 초과첨도를 허용한다는 측면에서 정규분포보다 훨씬 유연하면서, 동시에 정규분포를 극한분포의 형태로 포함하고 있다. 또한 정규분포처럼 다변량 분포함수가 존재하기 때문에 표본선택 모형과 같은 다변량 모형에서도 활용할 수 있다. 본 논문은 $S_U$-정규분포를 이용한 표본선택 모형에서 로그우도 함수와 조건부 기댓값을 도출하고, 시뮬레이션을 통해 정규분포 모형과 추정성과를 비교한다. 또한 자동차 보유 가구들의 자동차 유지비에 관한 실제 데이터를 이용하여 $S_U$-정규분포 표본선택 모형의 추정결과를 제시한다.
본 논문에서는 Kim & Bickel(2003)에서 제안한 이변량 정규분포를 위한 검정통계량을 Fattorini(1986)의 방법을 이용하여 이변량 이상인 경우에도 실제적으로 사용가능 하도록 일반화하였다. Fattorini(1986)의 통계량은 Shapiro & Wilk(1965)의 일변량 정규분포를 위한 검정통계량을 다변량으로 확장한 것이다. 그리고 제안된 통계량은 Fat-torini(1986) 통계량의 근사통계량으로 생각할 수 있으며 표본의 크기가 클 때도 사용 가능하다. 또한 모의실험을 통하여 여러 가지 대립가설에서 기존의 통계량과의 검정력을 비교하였다.
다변량 왜정규분포는 다변량 정규분포를 포함하는 분포로 최근 많은 응용분야에서 활용되고 있다. 본 논문에서는 다변량 왜정규분포를 기반으로 하는 선형결합통계량의 분포함수에 대한 안장점근사를 다루었다. 이는 단변량 왜정규분포 기반 표본평균에 대한 Na와 Yu (2013)의 결과를 선형결합 및 다변량의 경우로 확장한 것이다. 모의실험과 실제자료분석을 통해 제안된 근사법의 유용성과 정확도를 확인하였다.
EDF에 근거한 $Cram{\acute{e}}r$-von Mises 통계량을 합교원리를 이용하여 다변량으로 일반화한다. 그리고 제안된 통계량의 귀무가설에서의 극한분포를 적절한 공분산 함수를 가진 가우스 과정의 적분의 형태로 표현하고 통계량의 근사적인 계산방법을 고려한다. 또한 실제 자료에 제안된 통계량을 적용해보고 여러가지 대립가설에서의 검정력을 유사한 통계량과 비교해 본다.
Journal of the Korean Data and Information Science Society
/
제27권6호
/
pp.1453-1463
/
2016
가장 선호하는 금융위험 측정 방법은 통계적으로 최대손실금액을 추정하는 VaR (Value at Risk)이다. 포트폴리오를 구성하는 여러 산업에 대한 VaR (Value at Risk)는 분산공분산 행렬과 특정한 포트폴리오가 포함되어 변환된 일변량 위험을 이용하여 추정한다. Hong 등 (2016)은 다변량 분위벡터를 바탕으로 Vector at Risk를 정의하였으며, 특정한 포트폴리오가 설정되면 Vector at Risk 중의 한 점을 최적의 VaR 즉, 대안적인 VaR (AVaR)로 제안하였다. 본 연구에서는 다변량 정규분포에 대하여 AVaR의 특성을 탐색한다. 여러 종류의 분산공분산 행렬과 다양한 포트폴리오 가중값 벡터인 경우의 이변량과 삼변량의 정규분포를 따르는 모의실험 자료와 실증예제를 이용하여 대안적인 최대손실금액인 AVaR을 구하고 VaR과 비교 분석한다. 다변량 분위벡터를 이용한 AVaR는 VaR보다 작게 추정함을 발견하였으며, 이런 특징과 함께 AVaR의 특성을 토론한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.