References
- 김남현 (2004a). 다변량 정규성검정을 위한 근사 Shapiro-Wilk 통계량의 일반화, <응용통계연구>, 17, 35-47
- 김남현 (2004b). 정규성 검정을 위한 다변량 왜도와 첨도의 이용에 대한 고찰, <응용통계연구>, 17, 507-518
- Billingsley, P. (1986). Probability and Measure, Wiley, New York
- Csorgo, S. (1989). Consistency of some tests for multivariate normality, Metrika, 36, 107-116 https://doi.org/10.1007/BF02614082
- Darling, D. A. (1955). The Cramer-Smirnov test in the parametric case, Annals of Mathematical statistics, 26, 1-20 https://doi.org/10.1214/aoms/1177728589
- Dudley, R. M. (1978). Central limit theorems for empirical measures, The Annals of probability, 6, 899-929 https://doi.org/10.1214/aop/1176995384
- Durbin, J. (1973). Weak convergence of the sample distribution function when parameters are estimated, The Annals of Statistics, 1, 279-290 https://doi.org/10.1214/aos/1176342365
- Fang, K. -T. and Wang, Y. (1993). Number-theoretic Methods in statistics, Chapman & Hall, London
- Fattorini, L. (1986). Remarks on the use of the Shapiro-Wilk statistic for testing multivariate normality, Statistica, 46, 209-217
- Finney, R. L. and Thomas, Jr. G. B. (1994). Calculus, Add-son-Wesley, New York
- Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems, Annals of Eugenics, VII, 179-188
- Gnanadesikan, R. (1977). Methods for statistical data analysis of multivariate observations, Wiley, New York
- Gnanadesikan, R. and Kettenring, J. R. (1972). Robust estimates, residuals, and outlier detection with multiresponse data. Biometrics, 28, 81-124 https://doi.org/10.2307/2528963
- Henze, N. and Zirkler, H. (1990). A class of invariant and consistent tests for multivariate normality, Communications in Statistics - Theory and Methods, 19, 3595-3617 https://doi.org/10.1080/03610929008830400
- Kendall, M. G. (1975). Multivariate Analysis, Griffin, London
- Kim, N. (2005). The limit distribution of an invariant test statistic for multivariate normality, The Korean Communications in Statistics, 12, 71-86 https://doi.org/10.5351/CKSS.2005.12.1.071
- Kim, N. and Bickel, P. J. (2003). The limit distribution of a test statistic for bivariate normality, Statistica Sinica, 13, 327-349
- Koziol, J. A. (1982). A class of invariant procedures for assessing multivariate normality, Biometrika, 69, 423-427 https://doi.org/10.1093/biomet/69.2.423
- Malkovich, J. F. and Afifi, A. A. (1973). On tests for multivariate normality, Journal of the American Statistical Association, 68, 176-179 https://doi.org/10.2307/2284163
- Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519-530 https://doi.org/10.1093/biomet/57.3.519
- Mardia, K. V. (1974). Applications of some measures of multivariate skewness and kurtosis for testing normality and robustness studies. Sankhya A, 36, 115-128
- Massart, P. (1989). Strong approximation for multivariate empirical and related processes, via KMT constructions, The Annals of Probability, 17, 266-291 https://doi.org/10.1214/aop/1176991508
- Roy, S. N. (1953). On a heuristic method of test construction and its use in multivariate analysis, Annals of Mathematical Statistics, 24, 220-238 https://doi.org/10.1214/aoms/1177729029
- Royston, J. P. (1983). Some techniques for assessing multivariate normality based on the Shapiro-Wilk W, Applied statistics, 32, 121-133 https://doi.org/10.2307/2347291
- Shorack, G. R. and Wellner, J. A. (1986). Empirical processes with applications to statistics, Wiley, New York
- Singh, A. (1993). Omnibus robust procedures for assessment of multivariate normality and detection of multivariate outliers. In : Multivariate Environment Statistics (G.P. Patil and C. R. Rao, eds.) North-Holland, Amsterdam, 445-488
- Small, N. J. H. (1980). Marginal skewness and kurtosis in testing multivariate normality, Applied Statistics, 29, 85-87 https://doi.org/10.2307/2346414
- Sukhatme, S. (1972). Predholm determinant of a positive definite kernel of a special type and its applications, Annals of Mathematical Statistics, 43, 1914-1926 https://doi.org/10.1214/aoms/1177690862
- Zhu, L. -X., Fang, K.-T. and Bhatti, M.I. (1997). On estimated projection pursuit-type Cramer-von Mises statistics, Journal of Multivariate Analysis, 63, 1-14 https://doi.org/10.1006/jmva.1997.1673