본 소고에서는 통계 팩키지 사용자들에게 널리 알려진 SAS 8.1, SPSS 10, Minitab 13, 5-plus 2000을 대상으로 R-기법의 다변량 분석 중 주성분분석, 인자분석의 입력 자료 형태, 입력 옵션, 출력 형태를 비교하고 각 분석의 장단점을 정리하였다. 연구의 목적은 사용자들에게 가장 적합한 팩키지를 선택하여 R-기법 다변량 자료분석을 할 수 있도록 도움을 주는 데 있다.
최근 기후변화로 인한 기상이변 및 이상기후로 예상하지 못한 극치사상이 빈번하게 발생하고 있다. 극치사상을 예측하기 위해 다양한 모형들이 개발되고 있으나 주로 유출의 변화 특성을 모의하는데 대부분의 연구가 초점을 맞추고 있다. 그러나 기본적으로 사용되는 강수량 자료의 정확한 추정이 기후변화 연구에서 가장 중요하다고 해도 과언이 아니다. 또한, 과거 연구들은 강수지점간의 공간상관성을 고려하지 않고 일강수량을 모의 발생시킨 후 이를 입력 자료로 강우-유출 모형에 사용하여 유역전체의 내리는 강수의 특성을 반영하지 못하였다. 이런 점들을 해결하기 위해 유역에 존재하는 실제 강우패턴을 모의 할 수 있는 다변량 Downscaling Model을 제안하였고, 기존 연구에서 극치사상을 재현해 내지 못하는 문제를 해결하기 위하여 입력 자료를 극치 값으로 변환하여 분석을 수행하였다. 즉, 본 논문에서는 실제 유역에 적용하여 모형의 타당성을 평가하고 기존 연구와 비교하여 극치 수문량의 변동 특성 등을 분석, 평가하였다.
본 연구에서는 일 증발접시 증발량 모델링을 위한 다변량 적응 회귀 스플라인 (multivariate adaptive regression splines, MARS) 모델의 성능을 평가하였다. 모델 입력변수 집합은 부산 관측소 (기상청)로부터 수집된 기상자료를 활용하여 증발접시 증발량과의 상관성이 높은 변수들의 조합으로 구성되었으며, 일사량, 일조시간, 평균지상온도, 최대기온의 조합으로 구성된 세 가지 입력집합이 결정되었다. MARS 모델의 성능은 네 가지의 모델성능평가지표를 활용하여 정량적으로 산출되었으며, 그 결과를 인공신경망 (artificial neural network, ANN) 모델과 비교하였다. 입력변수로서 일사량 및 일조시간을 가지는 Set 1의 경우 MARS1 모델이 ANN1 모델보다 우수한 성능을 나타내었으며, Set 2 (일사량, 일조시간, 평균지상온도)의 경우 ANN2 모델, Set 3 (일사량, 일조시간, 평균지상온도, 최대기온)의 경우 MARS3 모델이 상대적으로 우수한 모델 성능을 나타내었다. 모든 분석 모델들을 비교하였을 때, MARS3, ANN2, ANN3, MARS2, MARS1, ANN1 모델의 순서로 우수한 모델 성능을 나타내었으며, 특히 MARS3 모델은 CE = 0.790, $r^2=0.800$, RMSE = 0.762, MAE = 0.587로서 가장 우수한 일 증발접시 증발량 모델링 성능을 나타내었다. 따라서 본 연구에서 적용한 MARS 모델은 지상관측 기상자료를 활용한 일 증발접시 증발량 모델링에서 효과적인 대안이 될 수 있을 것으로 판단된다.
지역 저수지들은 농업용수 공급의 중요한 수원공으로 가뭄과 같은 극단적 기후 조건을 대비하여 안정적인 저수율 관리가 필수적이다. 저수율 예측은 국지적 강우와 같은 지역적 기후 특성뿐만 아니라 작부시기를 포함하는 계절적 요인 등에 크게 영향을 받기 때문에 적절한 예측 모델을 선정하는 것만큼 입/출력 데이터 간 상관관계 파악이 무엇보다 중요하다. 이에 본 연구에서는 1991년부터 2022년까지의 전라북도 400여 개 저수지의 광범위한 다변량 데이터를 활용하여 각 저수지의 복잡한 수문학·기후학적 환경요인을 포괄적으로 반영한 저수율 예측 모델을 학습 및 검증하고, 각 입력 특성이 저수율 예측 성능에 미치는 영향력을 분석하고자 한다. 신경망 구조에 따른 저수율 예측 성능 개선이 아닌 다변량의 입력 데이터와 예측 성능 간의 상관관계에 초점을 맞추기 위하여 실험에 사용된 예측 모델로 합성곱신경망 또는 순환신경망과 같은 복잡한 형태가 아닌 완전연결계층, 배치정규화, 드롭아웃, 활성화 함수 등의 조합으로 구성된 기본적인 순방향 신경망을 채택하였다. 추가적으로 대부분의 기존 연구에서는 하루 단위의 단기 예측 성능만을 제시하고 있으며 이러한 단기 예측 방식은 10일, 한 달 단위 등 중장기적 예측이 필요한 실무환경에 적합하지 않기 때문에, 본 연구에서는 하루 단위 예측값을 다음 입력으로 사용하는 재귀적 방식을 통해 최대 한 달 뒤 저수율 예측 성능을 측정하였다. 실험을 통해 예측 기간에 따른 성능 변화 양상을 파악하였으며, Ablation study를 바탕으로 예측 모델의 각 입력 특성이 전체 성능에 끼치는 영향을 분석하였다.
수자원시스템의 설계, 계획, 운영에 있어 핵심적인 수문변수의 미래거동에 대한 보다 나은 추정치가 필요하다. 예를 들어, 수력발전, 레크리에이션 이용과 하류지역의 오염희석과 같은 다중 목적 기능을 유지하기 위하여 다목적댐을 운영할 때에, 다가오는 미래시간에 대한 계획된 유량의 예측이 요구된다. 예측의 목적은 미래에 발생할 정확한 예상치를 제공하는 것이다(Keith W. Hipel, 1994). 본 연구의 주요 목적은 금강수계인 대청댐에서 다변량 추계학적 시스템의 해석을 위한 모형의 추정과 등정을 위한 과정을 개발하는데 있다. 일반적 추계학적 시스템 모형이 표현되며 그것으로부터 수문학적 시스템의 모형을 매우 적절하게 유도하기 위한 다중 입력-단일 출력 TF, TFN, ARMAX모형을 유도하는데 있다. 이 모형은 수문학적 시스템을 위한 경우인 상관된 입력을 설명할 수 있도록 개발된다. 일반적인 모형을 만드는 전략이 사용되며 실제유역시스템에 적용하여 검토해 보고자 한다.
단기간의 실측자료를 이용하여 다변량 추계학적 모형에 의해 월유량 자료를 모의발생 시키는 목적은 수자원 시스템의 운영 조작 방침을 결정하기 위한 풍부한 입력자료를 제공하는데 있다. 본연구에서는 2종류의 다변량 모형(Thomas-Fiering 과 Matalas)을 서로 근접해 있는 두 지점에 적용하여 각각의 모형에 의한 모의 결과의 우수성과 적용가능성을 검토하여 보았으며, 이를 위해 모멘트법과 Fourier 분석에 의한 실측자료의 통계특성치를 구하였으며 비교의 기준으로는 실측치와 모의발생 자료의 통계특성을 이용하였다. 본 연구에 사용한 자료를 이용한 연구분석결과로는 다변량 Matalas 모형이 좀더 좋은 결과를 얻을 수 있었으며 변수추정도 수월함을 보였다.
본 연구에서는 부도예측용 인공신경망의 입력노드 선정을 위한 휴리스틱으로 연결강도분석 접근법을 제안한다. 연결강도분석은 학습이 끝난 인공신경망에서 입력노드와 은닉노드와 연결된 가중치의 절대값 즉, 연결강도를 분석하여 입력변수를 선정하는 접근법으로, 본 연구에서는 약체연결뉴론제거법, 강체연결뉴론선택법 그리고 이 두 기법을 통합한 통합 연결강도 모형을 제안하여 각각 의사결정 트리 및 다변량판별분석에 의해 선정된 입력변수를 이용한 인공신경망 모형과 예측율을 비교한다. 실험 결과 본 연구에서 제안하고 있는 방법론이 의사결정트리나 다다변량판별분석 기법 보다 높은 예측율을 보여 주었다. 특히 두 기법의 통합연결강도 모형의 경우에는 다른 단일 기법보다 높은 예측율을 보이고 있다.
공학문제에서 많은 확률 변수들은 상관성을 가지고 있고, 입력변수의 상관성은 기계시스템의 통계적 성능 분석 결과에 큰 영향을 미친다. 하지만, 상관 변수들은 결합분포함수를 모델링하기 어렵다는 이유로 종종 독립변수로 취급되거나 특정한 모수적 모델로 표현되는 경우가 많으며, 특히 데이터가 적은 경우 결합분포함수를 정확히 모델링하는데 더 큰 어려움이 있다. 본 연구에서 개발된 경계데이터를 이용한 다변량 커널밀도추정은 비선형성을 갖는 다양한 형태의 다변량 확률 분포 추정을 위해 개발되었다. 다변량 커널밀도추정은 주어진 데이터와 균등분포함수의 파라미터의 신뢰구간으로부터 생성된 경계데이터를 결합하여 데이터의 질과 수에 덜 민감하다. 따라서 제안된 방법은 보수적인 통계모델링과 신뢰성 해석 결과를 도출할 수 있으며, 통계시뮬레이션과 공학예제를 통해 그 성능을 검증하였다.
자신의 현재와 과거의 시계열데이터만을 가지고 시계열 모형을 구축하는 단변량 ARIMA모형 분석법과는 달리, 관심의 대상이 되는 출력시계열과 이와 관련있는 입력시계열의 동태적 특성을 나타내는 전이함수모형(Transfer function model)을 사용하여 소양강댐, 충주댐, 화천댐에 대한 월별 수문자료를 이용하여 유입량을 예측해 보고자 한다. 본 연구의 주요 목적은 다변량 추계학적 시스템의 해석을 위한 모형의 추정과 등정을 위한 과정을 개발하는데 있다. 일반적 추계학적 시스템 모형이 표현되며 그것으로부터 수문학적 시스템의 모형을 매우 적절하게 유도하기 위한 다중 입력-단일 출력 TF, TFN모형을 유도하는데 있다. 이 모형은 수문학적 시스템을 위한 경우에 있어 상관된 입력을 설명할 수 있도록 개발된다. 일반적으로 모형을 만드는 전략이 유도되며 실제유역시스템에 적용하여 검토된다. 한강수계 주요 다목적댐인 소양강댐, 충주댐, 화천댐의 수문자료를 가지고 추계학적 모형(TF, TFN)에 의한 결과와 실제유입량을 비교하여 검토하고자 한다.
실측자료가 충분하지 못한 단기간의 유출량 자료로부터 추계학적 모형에 의해 장기간의 자료를 모의발생시키는 목적은 수공구조물의 설계에 필요한 설계홍수량의 산정 및 수자원 시스템의 운영조작 방침을 결정하기 위한 풍부한 입력자료를 제공하는데 있다. 특히 본 연구에서는 단일지점이 아닌 다지점에 대한 지점간 서로의 연관성을 고려한 하천유량의 추계학적인 모의 발생기법인 다변량 자기회귀 모형을 적용하고자 한다. 따라서 본 연구에서는 낙동강유역의 2개 지점에 대하여 다변량 모형을 적용하여 모의 발생된 월유량과 실측치를 통계적으로 비교, 분석하였다. 모의발생된 월유량과 실측치를 평균, 분산, 왜곡도, 상관관계 등에 의해 비교, 분석한 결과 모의발생된 월유량과 실측치는 통계적으로 매우 유사하게 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.