• Title/Summary/Keyword: 다량치환

Search Result 162, Processing Time 0.025 seconds

Compressive Strength Generation Properties of Concrete using a Large Amount of Industrial Byproduct (산업부산물을 다량 사용한 콘크리트의 압축강도 발현 특성 검토)

  • Kim, Yong-Ro;Song, Young-Chan;Park, Jong-Ho;Jeong, Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.67-73
    • /
    • 2011
  • In this study, it was investigated compressive strength generation of concrete using high volume mineral admixture obtaining fundamental data for the application of concrete structure in construction field. For this, it was evaluated compressive strength with unit binder contents($310{\sim}410kg/m^3$), replacement ratio of mineral admixture(70~90%), unit water contents($140{\sim}150kg/m^3$) and curing temperature in the normal strength range. Also, after producing mock-up structure, hydration heat and compressive strength generation was evaluated to examine properties in the concrete member. In case of concrete using a large amount of industrial byproducts which was reviewed in this study, it is possible to secure compressive strength more than 24MPa at age 28days with about $13^{\circ}C$ ambient temperature of curing condition and that is considered to be applied to structure at construction site.

  • PDF

Hydration and Compressive Strength of High-volume Fly Ash Cement Paste (하이볼륨 플라이애시 시멘트 페이스트의 수화 및 압축강도 특성)

  • Hwang, Chul-Sung;Moon, Eun-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.156-162
    • /
    • 2017
  • Recently, researches on High-Volume Fly ash Cement(HVFC), which is replacing high portion of cement to fly ash, have been actively conducted to reduce $CO_2$ formation. Though HVFC has various advantages, low strength development in early ages is pointed out as the biggest problem in the application of fly ash. In order to overcome such limitations, this study investigated the hydration and compressive strength characteristics of HVFC paste depending on the fly ash content with the mixing ratio varying from 0 to 80 %. Experimental results show that the HVFC paste with low water-binder ratio can overcome the limitation of low compressive strength at early ages. Also, from the result of heat flow delay, 50 % of fly ash weight ratio was the critical point of the filler effect.

A Study for the Quality Improvement of Concrete Using Fly-Ash High Volume (플라이애시를 다량 치환한 콘크리트의 품질향상에 관한 연구)

  • Lee, Joung-Ah;Park, Jong-Ho;Chung, Yoong;Park, Bong-Soon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.601-604
    • /
    • 2008
  • This study as using admixture (G), high early strength agent, calcium hydroxide {a(OH)2} and fine particle cement, etc which have been newly developed for the purpose of quality improvements like the improvement of early strength of concrete that the FA was substituted by 20%, etc, reviewed the possibility of the utilization in the great quantity and the results are summarized as the followings. Slump loss by the kind of mixing material of high early strength agent and Ca(OH)$_2$ showed the smaller width of decrease than that of plain to appear the improved results and fine particle cement and G admixture showed the large slump loss. Air contents were appeared to satisfy the target air contents at all mixing materials. Regarding the compressive strength of the concrete by the kind of mixing material, G admixture was appeared to be highest all on aging 3 days, 7days and 28days at the initial strength. And fine particle cement and high early strength agent showed higher strength increase rate on aging 3days than plain but showed that the increase of strength becomes gradually dulled as aging is increased. And Ca(OH)$_2$ had almost no effect.

  • PDF

Applications of Agro-Based Materials for Water Dropwort (Oenanthe stolonifera DC) Organic Farming (미나리 유기재배를 위한 활용자재 시용효과)

  • Ahn, Byung-Koo;Moon, Young-Hun;Kwon, Young-Rip;Lee, Jin-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.1
    • /
    • pp.83-92
    • /
    • 2010
  • Organic farming is a type of agricultural practices based on naturally occurring processes excluding or strictly limiting the use of synthetic fertilizers, pesticides, and other chemicals. This study was conducted to investigate the influences of agro-based materials, effective microorganisms (EM), liquid silicate (LS), and organic liquid fertilizer (OLF) for water dropwort (Oenanthe stolonifera DC.) cultivation. Soil pH, soil organic matter, and plant available phosphorous decreased with LS application. Exchangeable Ca and Mg decreased with EM application, and electrical conductivity and exchangeable Ca and K decreased with OLF application. Most of essential nutrient contents in water dropwort were reduced with the treatments of LS, EM, and OLF as compared with those in control plot, except nitrogen and phosphorus. However, diseases and insect pests were almost not observed in the water dropwort in the agro-based material application plots, except cluster caterpillar (Spodoptera litura). Productivity of water dropwort tended to be reduced: its higher productivity in the OLF and EM+LS plots and lower in the LS and control plots.

Studies on the Adsorption and Desorption of Cs137 from Paddy Soil (답토양(畓土壤)에서 Cesium-137 흡(吸)·탈착(脫着)에 관(關)한 연구(硏究))

  • Kim, Jae-Sung;Lim, Soo-Kil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.2
    • /
    • pp.115-121
    • /
    • 1986
  • This experiment was conducted to examined the effects of the physico-chemical and mineral-logical properties of paddy soil on the desorption of $Cs^{137}$ from radionuclide, $Cs^{137}$ absorbed soils. 1. Adsorption of $Cs^{137}$ by paddy soil was very much and exchangeable fraction of $Cs^{137}$ extracted by ammonium acetate was very high compared to the water soluble fraction. Exchangeable fraction of $Cs^{137}$ in paddy soil decreased with the increase of potassium application and increased proportionally with the increase of $Cs^{137}$ treatment. 2. The distribution of several forms of $Cs^{137}$ in soils depend on the soil type. Average-distribution rates of water soluble, exchangeable and non-exchangeable fractions of $Cs^{137}$ in soils were 5.9%, 17.1% and 77.0%, respectively. 3. The desorption of $Cs^{137}$ from adsorbed soils decreased with increase of pH and exchangeable cations of the soils, but it increased as organic matter and clay content increase in soil. 4. Non-exchangeable adsorption of $Cs^{137}$ was high in the soils of which both Illite and Vermiculite were dominant.

  • PDF

Engineering Characteristics of Blast Furnace Slag Cement Mortar Using Chlorine Bypass System-Dust as Alkali Activator (Chlorine Bypass System-Dust를 알칼리 자극제로 사용한 고로슬래그 시멘트 모르타르의 공학적 특성)

  • Han, Min-Cheol;Lee, Dong-Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.235-244
    • /
    • 2020
  • This study conducted a series of studies to offer a novel method of using CBS-dust that produced as by-product in the manufacture of cement. Four different contents of BS and CBS-dust were adopted for test parameters of this study. Mortar with 50% of W/B was fabricated. First, in the case of the fresh mortar, the flow decreased as the CBS-dust replacement rate increased, but the binder composition ratio BS 45% and 65% showed higher fl ow than Pl ain when repl acing CBS-dust 5%. In the case of air content, overall, the tendency was proportional to the CBS-dust replacement rate, and chloride tended to exceed the reference value at all replacement rates except for the CBS-dust 0% replacement. The compressive strength of the hardened mortar shows the resul t that the strength is improved when the CBS-dust is repl aced by 5% to 10%, and the CSH gel and structure formation is confirmed by microstructure analysis through the hydration reaction when the CBS-dust is replaced. Therefore, for a given condition CBS-dust is used as a early-strength admixture in a concrete secondary product that uses a large amount of admixture without reinforcing bars it can be an effective method for enhancing the strength of concrete as an alkali activator.

Coating Effect by Applying Refined Cooking Oil on the Carbonation of High Volume Admixture Incorporating Concrete (정제유지류 도포가 혼화재 다량치환한 콘크리트의 탄산화에 미치는 영향)

  • Kim, Tae-Cheong;Choi, Young-Doo;Baek, Byung-Hoon;Shin, Dong-An;Oh, Seon-Kyo;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.146-147
    • /
    • 2014
  • In this study, as the resistance of the carbonation for high volume admixture incorporating concrete, coating effect of using refined cooking oil in the surface of high volume admixture incorporating concrete has been tested. The following results could be made as the conclusion. For the fresh concrete, the slump and air content has been identified as satisfying the target range. For the hardened concrete, comparing with specimen of Plain, specimen with coating showed better long age compressive strength. For the carbonation speed, the specimen of FA30 showed highest speed and the specimen of BS60 showed higher speed than specimen of Plain. For all the specimens coated with RCO, as the decrease of capillary pores inside the concrete, the carbonation speed has been obviously decreased and with even better effect than using PEP coating. It could be identified that specimens with coating by RCO showed good effect on refrain the speed of carbonation.

  • PDF

An Experimental Study on Hydration Heat and Strength Properties Concrete with High Volume Fly-Ash (플라이애시 콘크리트의 수화발열 특성과 압축강도 특성에 관한 실험적 연구)

  • 김우상;김광기;백민수;김우재;정재영;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.67-71
    • /
    • 2003
  • This study is for the great quantity use of fly-ash. For the producing of high volume concrete from the use of fly-ash, the method of replacement between bonding agents and fine aggregate by fly-ash at the same time was used. It was used that the adiabatic temperature rise of concrete about the mass member which bad been produced by the method that was mentioned before, and the hydration heat of the core test pieces in concrete was measured. Also the core test pieces which were replaced with fly-ash was studied by the compressive streneth's comparison between standard care test pieces and core test pieces. In the case of mass test pieces, hydration heat and the tine to reach the highest temperature were decreased by an increase in replaced fly-ash's amounts of concrete. In addition, among the test pieces having the same amounts of concrete, the test pieces having more replaced amounts of fly-ash's fine aggregate showed higher hydration heat and the increased time to reach the highest temperature. Compressive strength was also increased by hydration heat's decrease according to fly-ash replacement. Replacement of fly-ash was more effective in high temperature environment.

  • PDF

A Study on Hydration Heat Properties and Strength Properties of High Volume Fly-Ash Concrete (플라이애시를 대량 사용한 콘크리트의 수화열특성 및 강도특성에 관한 연구)

  • Paik, Min-Su;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.135-142
    • /
    • 2003
  • This study is for the great quantity use of fly-ash. For the producing of high volume concrete from the use of fly-ash, the method of replacement between bonding agents and fine aggregate by fly-ash was used at the same time. It was used that the adiabatic temperature rise of concrete about the mass member which had been produced by the method that was mentioned before, and the hydration heat of the core test pieces in concrete was measured. Also the core test pieces which were replaced with fly-ash was studied by the compressive strength's comparison between standard care test pieces and core test pieces. In the case of mass test pieces, hydration heat and the time to reach the highest temperature were decreased by an increase in replaced fly-ash's amounts of concrete. In addition, among the test pieces having the same amounts of concrete, the test pieces having more replaced amounts of fly-ash's fine aggregate showed higher hydration heat and the increased time to reach the highest temperature. Compressive strength was also increased by hydration heat's decrease according to fly-ash replacement. Replacement of fly-ash was more effective in high temperature environment.

Effects of Changes in Resuscitation Temperature and Curing Method on the Compressive Strength of the Large Volume Mortar of Fly Ash after Application of the Resuscitation Material (소생재 도포 후 소생온도 및 양생방법 변화가 Fly Ash 다량치환 모르타르의 압축강도에 미치는 영향)

  • Choi, Yoon-Ho;Han, Jun-Hui;Lee, Young-Jun;Hyun, Seung-Yong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.139-140
    • /
    • 2019
  • In this study, we conducted a comparative analysis of the effects of resuscitation after the re-application of mortar with much FA replacement on the degree of resuscitation. Results When NaOH was applied to the top of the mortar where 90% of FA was replaced, and maintained for 24 hours, the degree of resuscitation at $40^{\circ}C$ was completely improved. However, when medium curing was carried out, it showed a higher degree of compression than water or lapping curing at 10 MPa in 28 days. The degree of resuscitation on the 28th day was revived from around 10% of the normal level to about 20~30%, and it was analyzed that it was difficult to achieve the OPC reduction by any method.

  • PDF