• 제목/요약/키워드: 다단계 신경망

검색결과 21건 처리시간 0.028초

신경망과 다단계 연관규칙을 이용한 구매 패턴 분류 시스템의 설계 (Design of Purchasing Pattern Classification System Using Nural Network and Multiple-Level Association Rules)

  • 이종민;정홍
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.203-206
    • /
    • 2000
  • 신경망을 이용해 고객집단을 분류하고 고객의 특성에 따라 세분화된 고객들에 대해 다단계 연관규칙을 적용해서 고객의 상품 구매패턴을 찾아 줌으로써 마케팅 전략 결정을 지원하는 구매패턴분류 시스템을 설계한다. 고객분류를 위한 신경망 시스템은 다층 퍼셉트론에 역전파 알고리즘을 이용한다. 주소, 구매금액, 구매횟수, 고객 구분, 상긴 등과 같은 고객정보를 입력층에 입력변수로 지정하고, 이에 따른 우량/일반고객을 출력변수로 지정한 후 신경망을 학습시키면, 실제의 우량/일반의 간과 예측되는 우량/일반의 값의 차이론 최소화시키면서 모형을 형성시켜 나가게 된다. 구매패턴 분류 시스템은 다단계 연관규칙을 이용한다. 고객분류 서브시스템을 통해 고객집단이 세분화되면 각각의 고객집단에 대해 TID와 품목 트랜잭션을 입력으로 cumulate 알고리즘과 개념계층을 이용해 일반화 과정을 수행하면서 빈발 항목을 찾게 되고 이론 근거로 항목간의 연관규칙을 찾아내게 된다.

  • PDF

다단계 신경망을 이용한 초기 구조설계 시스템 개발 (System for Preliminary Structural Design using Multi-Level Neural Networks)

  • 김남희;장승필;이승철
    • 한국전산구조공학회논문집
    • /
    • 제15권2호
    • /
    • pp.261-270
    • /
    • 2002
  • 신경망은 설계자의 경험과 통찰력과 같은 비정형적 정보에 의존하는 초기 구조설계단계의 시스템화에 매우 적합하다. 초기 구조설계단계를 시작하는 시점에서는 설계정보가 매우 적음을 생각해 볼 때, 신경망 모델은 제한적인 적은 정보를 입력으로 하고 상대적으로 훨씬 많은 출력을 가지도록 설계되어야 한다. 그러나, 이러한 상황은 신경망 학습시 학습속도, 수렴, 출력 값의 신뢰성등 여러 가지 문제점을 초래한다. 본 연구에서는 이러한 문제점을 해결하기 위하여 설계 정보가 점진적으로 증가하는 흐름을 가지고 있다는 점에 착안해서 다단계 신경망을 제시하고, 이를 토대로 사장교 초기 구조설계시스템에 대한 원형을 구현하였다. 본 연구결과 초기 구조설계단계 전체에 대해서 하나의 신경 망으로 설계하는 것 보다 다단계 신경 망으로 나누어서 동일한 작업을 수행하도록 하는 것이 훨씬 유리하다.

예비 구조설계를 위한 유전알고리즘을 이용한 다단계 인공신경망에 관한 연구 (A Study on the Multi-Level Artificial Neural Networks Using Genetic Algorithm for Preliminary Structural Design)

  • 최병한
    • 한국강구조학회 논문집
    • /
    • 제16권4호통권71호
    • /
    • pp.443-452
    • /
    • 2004
  • 인간의 뇌와 유사한 병렬 연산 모델을 활용하여 다양하고 복잡한 비선형적인 문제에 효과적으로 연관관계를 조직화 할 수 있는 인공신경망에 관한 연구가 근래에 공학의 넓은 분야에서 도입되고 그에 따른 많은 성과가 나타나고 있다. 본 연구에서는 설계자의 판단력과 경험에 의존 하던 기존의 예비구조설계 단계에 효과적인 인공신경망을 적용하여 예비 구조설계 단계에 컴퓨터를 이용한 정형화된 방법을 제시하고자 한다. 이를 위해 각 구조물의 일반적인 설계과정에 따른 다단계 신경망을 제시하고 인공신경망의 학습은 역전파알고리즘과 유전알고리즘을 적용하여 예비구조설계의 원형을 구현한다. 이와 같이 구성된 다단계 신경망을 사장교의 예비구조설계 단계에 활용하여 본 연구의 적용성과 두가지 학습기법에 따른 결과를 비교 분석 한다.

얼굴 패턴 검출 문제에서 FMM모델 기반의 특징 선정기법 (FMM Model-based Feature Selection Technique for Face Detection)

  • 조일국;김호준
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.706-708
    • /
    • 2005
  • 본 연구에서는 다단계 필터와 복합형 신경망을 사용하는 얼굴 검출 시스템에서 FMM 모델을 이용한 특징선정 기법을 소개한다. 색상, 모션 및 명암을 이용한 다단계 필터는 검출 대상 영역의 개수를 줄임으로써 시스템의 실시간 검출기능을 가능하게 한다. 신경망을 이용한 특징추출 단계에서는 대상영역의 기본 특징으로부터 일련의 특징지도를 생성하게 된다. 이 과정에서 패턴 분류 신경망의 입력으로 사용되는 특징집합이 지나치게 커짐으로써 신경망의 규모와 계산량이 방대해지는 단정을 갖는다. 이에 본 논문에서는 FMM 모델의 수정된 특성으로부터 특징과 각 클래스에 대한 상호 연관도 요소를 정의하고, 이로부터 특징의 상대적 중요도를 평가함으로써 성능의 저하 없이 최적의 특징집합을 선정하는 방법론을 소개한다.

  • PDF

다단계 신경 회로망을 이용한 블랙박스 영상용 차량 번호판 인식 알고리즘 (A License Plate Recognition Algorithm using Multi-Stage Neural Network for Automobile Black-Box Image)

  • 김진영;허서원;임종태
    • 한국정보통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.40-48
    • /
    • 2018
  • 본 논문은 차량과 함께 카메라의 위치가 이동하는 블랙박스 영상을 위한 차량 번호판 인식 알고리즘을 제안한다. 카메라의 흔들림이나 빛의 변화가 많은 블랙박스 영상에서 다단계 신경 회로망을 사용하여 한글 문자의 인식률을 높여 전체적인 차량 번호판의 인식률을 높이고자 한다. 제안한 알고리즘은 차량 번호판의 한글 문자의 모음과 자음을 분리하여 인식한다. 먼저, 1차 신경 회로망으로 모음을 인식하고, 종모음('ㅏ','ㅓ')과 횡모음('ㅗ','ㅜ')로 구분한 뒤 각각의 모음군에 2차 신경 신경회로망을 이용하여 자음을 구분한다. 실제 블랙박스 영상을 획득하여 차량 번호판 인식 시뮬레이션을 수행하였으며, 그 결과 제안한 인식 시스템이 기존의 신경 회로망 기법을 사용한 차량 번호판 인식 시스템보다 높은 인식률을 보임을 확인하였다.

신경망을 이용한 빠른 서포트 벡터 분류 (Fast Support Vector Classification based on Artificial Neural Networks)

  • Kim, Kwang-In
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.604-606
    • /
    • 2004
  • 본 논문에서는 빠른 서포트 벡터 분류를 위해 신경망을 사용하는 방법을 제안한다. 주어 진 학습 데이터를 통해 낮은 학습 오류를 가지는 다단계 신경망을 얻으면 출력층을 제외한 은닉층은 주어진 문제를 선형분리 가능하게 하는 특징 추출기로 간주할 수 있다. 많은 계산시간을 요하는 키널 맵 대신 이를 사용해서 빠른 서포트 벡터 분류를 가능하게 하였다.

  • PDF

웨이브렛 변환과 RBF 신경망을 이용한 경로통행시간 예측모형 개발 -시내버스 노선운행시간을 중심으로- (Development of path travel time forecasting model using wavelet transformation and RBF neural network)

  • 신승원;노정현
    • 대한교통학회지
    • /
    • 제16권4호
    • /
    • pp.153-166
    • /
    • 1998
  • 본 연구에서는 도시 가로망에서의 구간 통행시간을 예측하기 위하여 time-frequency 분석의 일종인 웨이브렛변환과 RBF신경망 모형을 이용한 예측모형을 개발하였다. 웨이브렛 변환을 이용한 시계열 자료 분석을 통해서 통행시간에 내재되어 있는 다양한 패턴의 특징을 추출함으로써 오전/오후의 첨두현상, 신호교차로의 현시주기 등 주기적으로 발생되는 요인들에 의해서 통행시간 시계열 자료의 패턴에 나타나는 규칙성을 분석해 내었다. 분석된 패턴정보에 대한 규명은 카오스 이론을 근간으로한 시간지연좌표를 이용하여 시계열 자료의 규칙성을 시각적으로 판별하여 예측모형 구축에 활용하도록 하였다. 또, RBF신경망을 이용하여 예측범위의 공간적/시간적 확대에 따른 모형 구축에 소요되는 시간을 최소화하도록 하였으며, 시내버스 노선의 정류장간 운행시간 예측을 통해서 기존 연구에서 제기되었던 현실세계의 단순화, 다단계 예측시 정확성 등의 문제를 해결하였다. 예측실험결과 웨이브렛 변환을 데이터의 전처리 과정에 삽입하여 링크 통행시간의 패턴정보 예측에 활용할 경우, 기존의 예측모형에 비해서 훨씬 정확한 예측이 가능한 것으로 나타났으며, RBF 신경망은 짧은 학습시간에도 불구하고 역전파 신경망보다 우수한 예측력을 갖고 있는 것으로 밝혀졌다.

  • PDF

디지털 마모그램에서 형태적 분석과 다단 신경 회로망을 이용한 효율적인 미소석회질 검출 (An Effective Microcalcification Detection in Digitized Mammograms Using Morphological Analysis and Multi-stage Neural Network)

  • 신진욱;윤숙;박동선
    • 한국통신학회논문지
    • /
    • 제29권3C호
    • /
    • pp.374-386
    • /
    • 2004
  • 유방암은 최근에 빠르게 증가하고 있는 여성 암중의 하나이며 그 발명원인이 불명확하여 조기 검출만이 생존율을 높일 수 있는 유일한 방법이다. 본 논문에서는 효율적으로 미소석회질의 의심 영역을 검출할 수 있는 방법에 대하여 설명한다. 본 논문에서는 디지털 마모램 영상에 대한 통계적 분석으로부터 일반적인 미소석회질의 특성을 분석한 후 분석된 자료를 이용하여 다단 신경망을 구성한 후 의심영역으로 간주되는 ROI를 검출한다. ROI 검출을 위하여 4단계로 구성되는 알고리즘을 제안하며 전처리 과정, 다단계 thresholding, 선형필터를 이용한 1차 미소석회질 선별작업, 다단계 신경망을 이용한 2차 미소석회질 검출이 포함된다. 선형필터를 이용한 1차 선별작업에서는 모든 미소석회질을 검출할 수 있었고 유방조직 제거를 통한 신경망에서의 작업처리 감소율이 86%로 나타났다. 2단 신경망을 이용한 2차 미소석회질 검출단계에서 첫 번째 신경망에서는 미소석회질의 형태적 특성을 기반으로 11개의 특징 값들을 정의하였으며 모든 데이터에 대한 실험 결과 평균 96.66%의 인식률을 보였다. 그리고 두 번째 신경망에서는 첫 번째 인식 결과 값과 미소석회질의 군집특성을 이용하기 위해 첫 번째 인식결과를 토대로 조사된 군집분포 여부를 특징 값으로 사용하였으며 그 결과 1차 신경망보다 높은 평균 98.26%의 인식률을 보였다.

확률적 VQ 네트워크와 계층적 구조를 이용한 인쇄체 한자 인식 (The Recognition of Printed Chinese Characters using Probabilistic VQ Networks and hierarchical Structure)

  • 이장훈;손영우;남궁재찬
    • 한국정보처리학회논문지
    • /
    • 제4권7호
    • /
    • pp.1881-1892
    • /
    • 1997
  • 본 논문에서는 확률적 VQ 네트워크와 계층적 구조를 가지는 다단계 인식기를 이용한 인쇄체 한자 인식 방법을 제안한다. 대용량 신경망은 구현하기가 매우 어렵기 때문에 모듈화된 신경망을 이용하였으며, 이 과정에서 발생되는 문제점을 확률적 신경망 모델을 이용으로 제거하였다. 또한 엔트로피 이론을 적용하여 오인식률이 높은 혼동 문자쌍에 대하여 재분류를 수행하였다. 실험대상은 KSC5601 코드의 한자 4,888자 중, 동자이음문자를 제외한 4,619자로 하였으며, 학습 데이타와 실험 데이타에 대하여 실험결과, 각각 평균 99.33%, 92.83%의 인식률과 초당 4-5자의 인식속도를 얻음으로써 본 방법의 유효성을 보였다.

  • PDF

다중 부실예측모형을 이용한 통합 신용등급화 방법 (Using Business Failure Probability Map (BFPM) for Corporate Credit Rating)

  • 신택수;홍태호
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.835-842
    • /
    • 2003
  • 현행 기업신용평가모형에 관한 연구는 크게 부실예측모형 및 채권등급 평가모형으로 구분된다. 이러한 신응평가모형에 관한 연구는 단순히 부실여부 또는 이미 전문가 집단에 의해 사전에 정의된 등급체계만을 예측하는 데 초점을 맞추고 있었다. 그러나. 대부분의 금융기관에서 사용하는 신응평가모형은 기업의 부실여부만을 예측하거나 기존의 채권등급을 예측하기 위만 목적보다는 기업의 고유 신응위험을 평가하여 이에 적합한 신용등급을 부여함으로써, 효율적인 대출업무를 수행하기 위해 활용되고 있다. 본 연구에서는 기존의 부실예측모형들을 대상으로 다중 부실확률모형 (Business Failure Probability Map; BFPM) 접근방법을 이용한 신응등급화 방법을 제안하고자 한다. 본 연구에서 제시된 다중 부실확률모형은 신경망모형과 로짓모형을 통합하여 부도율, 점유율을 고려한 다단계 신용등급을 예측할 수 있게 해준다. 다중 부도확률지도 접근방법을 이용하여 각 금융기관에서 정의하는 수준의 신용리스크를 효과적으로 추정하고, 이를 기준으로 보다 객관적인 다단계 신용등급을 산출하는 새로운 신응등급화 방법을 제시 하고자 한다.

  • PDF