FMM Model-based Feature Selection Technique for Face Detection

얼굴 패턴 검출 문제에서 FMM모델 기반의 특징 선정기법

  • Cho, Il-Gook (School of Computer Science and Electronic Engineering , Handong Global University) ;
  • Kim, Ho-Joon (School of Computer Science and Electronic Engineering , Handong Global University)
  • 조일국 (한동대학교 전산전자공학부) ;
  • 김호준 (한동대학교 전산전자공학부)
  • Published : 2005.07.01

Abstract

본 연구에서는 다단계 필터와 복합형 신경망을 사용하는 얼굴 검출 시스템에서 FMM 모델을 이용한 특징선정 기법을 소개한다. 색상, 모션 및 명암을 이용한 다단계 필터는 검출 대상 영역의 개수를 줄임으로써 시스템의 실시간 검출기능을 가능하게 한다. 신경망을 이용한 특징추출 단계에서는 대상영역의 기본 특징으로부터 일련의 특징지도를 생성하게 된다. 이 과정에서 패턴 분류 신경망의 입력으로 사용되는 특징집합이 지나치게 커짐으로써 신경망의 규모와 계산량이 방대해지는 단정을 갖는다. 이에 본 논문에서는 FMM 모델의 수정된 특성으로부터 특징과 각 클래스에 대한 상호 연관도 요소를 정의하고, 이로부터 특징의 상대적 중요도를 평가함으로써 성능의 저하 없이 최적의 특징집합을 선정하는 방법론을 소개한다.

Keywords