• Title/Summary/Keyword: 다공성 구조

Search Result 652, Processing Time 0.034 seconds

Study on catalyst infiltration into the porous LSGM scaffold typed anode for LSGM electrolyte (LSGM 기반의 IT-SOFC를 위한 Infiltration 기법을 이용한 다공성의 LSGM 연료극 형성에 관한 연구)

  • Yoon, Byoung Young;Kim, Junghyun;Bae, Joongmyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.85.2-85.2
    • /
    • 2011
  • 현재 중온의 고체산화물 연료전지를 위해 다양한 전해질에 대한 연구되었으며 1994년 Ishihara et al.에서 1074K의 온도에서 높은 이온전도도를 갖는 페록스카이 구조를 갖는 LSGM 물질을 발표하였다. Sr과 Mg을 도핑한 Lanthanum gallate는 이온전도도가 1073K에서 0.14S/cm로 YSZ의 5배로 높은 이온전도도를 갖고 있으며 산화환경에서부터 환원환경에서 화학적으로 안정한 특성을 갖고 있다. 또한 LSGM 전해질은 넓은 산소 농도범위에서 안정적인 특성을 갖는 장점을 갖고 있다. 그러나 LSGM은 가장 널리 사용되는 연료극의 Ni 촉매와 고온 소결시 상호확산현상에 의한 2차상을 생성시켜 성능 저감의 원인으로 그 해결방안이 요원한 실정이다. 이에 본 논문에서는 LSGM 전해질에 LSGM scaffold를 형성하고 형성된 scaffold에 연료극 촉매 solution을 infiltration 시켜 저온에서 anode를 형성하여 그 성능을 연구하였다.

  • PDF

Synthesis of porous-structured (Ni,Co)Se2-CNT microsphere and its electrochemical properties as anode for sodium-ion batteries (다공성 구조를 갖는 (Ni,Co)Se2-CNT microsphere의 합성과 소듐 이차전지 음극활물질로서의 전기화학적 특성 연구)

  • Yeong Beom Kim;Gi Dae Park
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.178-184
    • /
    • 2023
  • Transition metal chalcogenides have garnered significant attention as anode materials for sodium-ion batteries due to their high theoretical capacity. Nevertheless, their practical application is impeded by their limited lifespan resulting from substantial volume expansion during cycling and their low electrical conductivity. To tackle these issues, this study devised a solution by synthesizing a nanostructured anode material composed of porous CNT (carbon nanotube) spheres and (Ni,Co)Se2 nanocrystals. By employing spray pyrolysis and subsequent heat treatments, a porous-structured (Ni,Co)Se2-CNT composite microsphere was successfully synthesized, and its electrochemical properties as an anode for sodium-ion batteries were evaluated. The synthesized (Ni,Co)Se2-CNT microsphere possesses a porous structure due to the nanovoids that formed as a result of the decomposition of the polystyrene (PS) nanobeads during spray pyrolysis. This porous structure can effectively accommodate the volume expansion that occurs during repeated cycling, while the CNT scaffold enhances electronic conductivity. Consequently, the (Ni,Co)Se2-CNT anode exhibited an initial discharge capacity of 698 mA h g-1 and maintained a high discharge capacity of 400 mA h g-1 after 100 cycles at a current density of 0.2 A g-1.

Fabrication of Porous Reticular Metal by Electrodeposition of Fe/Ni Alloy for Heat Dissipation Materials (Fe/Ni 합금전착에 의한 다공성 그물군조 방열재료의 제조 연구)

  • Lee, Hwa-Young;Lee, Kwan-Hyi;Jeung, Won-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.125-130
    • /
    • 2002
  • An attempt was made for the application of porous reticular metal to a heat dissipation material in semiconductor process. For this aim, the electrodeposition of Fe/Ni alloy on the porous reticular Cu has been performed to minimize the thermal expansion mismatch between Cu skeleton and electronic chip. Preliminary tests for the electrodeposition of Fe/Ni alloy layer were conducted by using standard Hull Cell to examine the effect of current density on the composition of alloy layer. It seemed that mass transfer affected significantly the composition of Fe/Ni layer due to anomalous codeposition in the electrodeposition of Fe/Ni alloy. A paddle type stirring bath, which was employed to control the mass transfer of electrolyte in the work, was found to allow the electrodeposition Fe/Ni with a precise composition. result showed that the thermal expansion of Fe/Ni alloy layer was much lower than that of pure copper. From the tests of heat dissipation by using the apparatus designed in the work the heat dissipation material fabricated in the work showed the excellent heat dissipation capacity, namely, more than two times as compared to that of pure copper plate.

Fabrication and Characterization of Porous PLLA Scaffolds with Gentamicin Sulfate Release System (겐타마이신 설페이트를 서방화한 다공성 PLLA 지지체의 제조와 물성평가)

  • 최명규;강길선;이일우;이종문;이해방
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.318-326
    • /
    • 2001
  • PLLA scaffold loaded with gentamicin sulfate (GS) was prepared by emulsion freeze-drying method for the prevention of infection and the improvement of wettability. i.e., the cell- and tissue-compatibility. GS-loaded PLLA scaffolds were characterized by scanning electron microscopy (SEM), mercury porosimetry and blue dye intrusion, and the GS release pattern was analyzed by high performance liquid chromatography (HPLC). GS-loaded PLLA scaffolds with porosity above 50%, medium pore size ranging from 30 to 57 ${\mu}{\textrm}{m}$ (with larger pore diameters greater than 150 ${\mu}{\textrm}{m}$), and specific pore area in the range of 35 to 75($m^2$ /g )were manufactured by varying processing parameter as GS concentration. It was observed that GS-loaded PLLA scaffolds were highly porous with good interconnections between pores for allowing cell adhesion and growth. These scaffolds may be applicable for scaffold as structures that facilitate either tissue regeneration or repair during reconstructive operations.

  • PDF

Design of A$1_2$$O_3$ substrate for the increasing fracture toughness (A$1_2$$O_3$기판 재료의 $K_{IC}$ 증가를 위한 재료 설계)

  • ;S.Tariolle;P.Goeuriot
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.177-179
    • /
    • 2002
  • A1$_2$ $O_3$기판재료의 $K_{IC}$ 증가를 위한 재료설계를 시도하였다. 먼저 A1$_2$ $O_3$기판을 구성하는 A1$_2$ $O_3$다층구조물에 적절한 다공성 중간층을 삽입하는 샌드위치 구조물을 제조하였다. 제조된 A1$_2$ $O_3$구조물의 미세구조를 관찰하였고, Vickers 경도와 three-point bending test를 통해서 단일조성 구조물과 샌드위치 구조물의 경도와 인성 측정치를 비교하였다. 다공층을 삽입한 A1$_2$ $O_3$샌드위치 구조물의 Single-Edge Notched Beam이 단일 조성의 구조물에 비해 파괴강도와 인성이 향상되는 결과를 얻었다.

  • PDF

Preparation and Characterization of Porous CeO2 Using Ionic Liquids (이온성액체를 이용한 다공성 산화세륨 합성)

  • Yoo, Kye Sang;Lee, Bu Ho
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.313-316
    • /
    • 2009
  • Synthesis of porous $CeO_2$ particles was investigated using various ionic liquids (ILs) as an effective template. The pore structure and crystalline phase of $CeO_2$ particles was affected significantly by the composition of ionic liquids. The strength of the hydrogen bonds on the anion part of ionic liquid was an essential factor to form the pore architecture of $CeO_2$ particles. Moreover, the length of alkyl group on the cation part of ionic liquid determined the pore size and surface area of $CeO_2$ particles. Among the ionic liquids, it was found that 1-Buthyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) was the most effective ionic liquid to synthesize the porous $CeO_2$ particle.

Analysis of Pore Characteristics on the Porous Body-Porosity Index of Ic and Is in Light Weight Aggregate (다공체 소지의 기공 특성 분석-경량골재에서의 기공지수 Ic와 Is에 대하여)

  • 권영진;이기강
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.176-181
    • /
    • 2004
  • EAF (Electric Arc Furnace) dust is classified as special wastes containing heavy metal contaminants may cause to damage an environment such as underground water contamination if they were not treated properly. For reutilizing the EAF dust, the porous body was made from EAF dust/clay composition system, and analyzed pore characteristics. It was found that a light-aggregate body was made up two different microstructures. One was non-black and dense microstructure which located near surface, and the other was black and porous microstructure (black coring) which located inner part. For systematizing the relationship of the black-coring area and the bloating degree, we defined the Ic(core index) and Is(shell index). It was found that the optimal bloating conditions of artificial light-weight aggregate were more than 0.5 of Ic and 0.4 of Is.