• Title/Summary/Keyword: 다공성매질 해석

Search Result 79, Processing Time 0.021 seconds

Porous Media Modelling and Verification of Thermal Analysis for Inlet and Outlet Ducts of Spent Fuel Storage Cask (사용후핵연료 저장용기 유로입출구의 다공성매질 모델링 및 열해석 검증평가)

  • Lee, Ju-Chan;Bang, Kyung-Sik;Choi, Woo-Seok;Seo, Ki-Seog;Ko, Sungho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.223-232
    • /
    • 2018
  • Bird screen meshes are installed at the air inlet and outlet ducts of spent fuel storage casks to inhibit the intrusion of debris from the external environment. The presence of these screens introduces an additional resistance to air flow through the ducts. In this study, a porous media model was developed to simplify the bird screen meshes. CFD analyses were used to derive and verify the flow resistance factors for the porous media model. Thermal analyses were carried out for concrete storage cask using the porous media model. Thermal tests were performed for concrete casks with bird screen meshes. The measured temperatures were compared with the analysis results for the porous model. The analysis results agreed well with the test results. The analysis temperatures were slightly higher than the test temperatures. Therefore, the reliability and conservatism of the analysis results for the porous model have been verified.

Numerical Study of Gap Size Ratio Effect for Noncondensable Gas Ventilation in Condensers (응축기의 비응축 가스 배출 타입에 따른 틈 간격 비율의 영향에 대한 수치적 연구)

  • Je, Jun-Ho;Kim, Soo-Jea;Choi, Chi-Woong;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.67-74
    • /
    • 2012
  • A numerical analysis was carried out to estimate the effect of the gap size ratio on the performance of condensers under noncondensable gas ventilation using the porous medium approach (PMA). In the PMA, the details of the tube bundle in the condenser are considered to be those of a porous medium, and the flow resistance term is added in the momentum equation. Three-dimensional analysis of the condensation for a McAllister condenser was conducted with the PMA using Fluent and user-defined functions (UDFs). The gap size effect on the condensation was negligible under pure steam conditions. However, the gap size effect was dominant in condensation with noncondensable gas and external venting. As the gap size decreased, the condensation rate increased for noncondensable gas in an external venting system.

Effective Method for Analysis of Heterogeneous Porous Media (비균질 다공성 매질의 효율적 해석 방법)

  • Park, Chang-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.459-467
    • /
    • 1998
  • The existing methods to analyze the heterogeneous porous media based on the similar media concept are the microscopic Miller similitude(MiS), the macroscopic Miller similitude(MaS) and the Warrick similitude(WS). The inter-relationship is found such that MiS ⊂ MaS ⊂ (⊂:subset). The proposed method is based ont eh assumption that the scale variables $\alpha$=w and the moisture content is dimensionless by introducing the effective degree of saturation instead of the degree of saturation into WS. The method, without the loss of generality in view of the inspectional analysis, can explain the heterogeneity of the media by using the scale variable $\alpha$ only. The media of $\alpha$=1 (average of $\alpha$) means the equivalent media corresponding to the heterogeneous media, while the standard deviation of $\alpha$ may explain the degree of the heterogeneity of the media under consideration. The hydraulic conductivity of the media with $\alpha$>1 is greater than that of the equivalent media, and the effective moisture content of the media with $\alpha$>1 is also greater. Based on these properties of the scale variable $\alpha$, the ideal vertical one-dimensional heterogeneous porous media is generated by using the technique of random number generation.

  • PDF

A Theoretical Study for the Design of Solar Air Heaters Using Porous Material (다공성 물질을 이용한 공기용 태양열 집열기의 설계를 위한 이론적 연구)

  • Hwang, Yong-Ha;Park, Seung-Ho;Kim, Jong-Eok
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.79-90
    • /
    • 1993
  • A theoretical study is conducted for the design of solar air heaters using porous material. Radiative characteristics of glazing and porous absorbing media are found through spectral transmittances measured by the Visible spectrometer and the FT-IR. Using those characteristics the efficiencies of collectors are calculated one-dimensionally with the use of the Two-Flux radiation model. The efficiencies increase, as the air flow rates or albedos in the visible range increase, and as albedos in the IR range decrease. The optimum thickness of the porous medium of 15-mesh stainless steel wire screens is 0.001m, which represents the opacity of one.

  • PDF

Numerical Study on Flow Characteristics of Hollow Fiber Membrane Module for Water Recovery Cooling Tower (수분회수 냉각탑에 적용되는 중공사막 모듈의 유동특성에 관한 수치해석적 연구)

  • Park, Sang Cheol;Park, Hyun Seol;Lee, Hyung Keun;Shin, Weon Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.537-544
    • /
    • 2017
  • The purpose of this study is to analyze the flow characteristics when a staggered hollow fiber membrane module is modeled as a porous medium. The pressure-velocity equation was used for modeling the porous medium, using pressure drop data. In terms of flow characteristics, we compared the case of the "porous medium" when the membrane module was modeled as a porous medium with the case of the "membrane module" when considering the original shape of the membrane module. The difference in pressure drop between the "porous medium" and "membrane module" was less than 0.6%. However, the maximum flow velocity and mean turbulent kinetic energy of the "porous medium" were 2.5 and 95 times larger than those of the "membrane module," respectively. Our results indicate that modeling the hollow fiber module as a porous medium is useful for predicting pressure drop, but not sufficient for predicting the maximum flow velocity and mean turbulent kinetic energy.

Thermal Phenomena of an N2O Catalyst Bed for Hybrid Rockets Using a Porous Medium Approach (다공성 매질 접근법을 적용한 하이브리드 로켓 N2O 촉매 점화기의 열적 현상)

  • 유우준;김수종;김진곤;장석필
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.89-96
    • /
    • 2006
  • In this study, fluid flow and thermal characteristics in a catalyst bed for nitrous oxide catalytic decomposition which is introduced as a hybrid rocket ignition system for small satellites were theoretically considered. To analyze the thermal phenomena of the catalyst bed, a so-called porous medium approach has been opted for modeling the honeycomb geometry of the catalyst bed. Using a Brinkman-extended Darcy model for fluid flow and the one-equation model for heat transfer, the analytical solutions for both velocity and temperature distributions in the catalyst bed are obtained and compared with experimental data to validate the porous medium approach. Based on the analytical solutions, parameters of engineering importance are identified to be the porosity of the catalyst bed, effective volumetric ratio, the ratio of the radius of the catalyst bed to the radius of a pore, heat flux generated by a heater, and pumping power. Their effects on thermal phenomena of the catalyst bed are studied.

A numerical investigation on nonlinear behavior of fluid flow with variation of physical properties of a porous medium (다공성 매질의 물리적 특성 변화에 따른 유체흐름의 비선형 거동에 대한 수치적 분석)

  • Jeong, Woochang
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.5
    • /
    • pp.325-334
    • /
    • 2017
  • In this study, the numerical investigation of the non-linear behavior of the fluid flow with physical properties, such as porosity and intrinsic permeability of a porous medium, and kinematic viscosity of a fluid, are carried out. The applied numerical model is ANSYS CFX which is the three-dimensional fluid dynamics model and this model is verified through the application of existing physical and numerical results. As a result of the verification, the results of the pressure gradient-velocity relationship and the friction coefficient-Reynolds number relationship produced from this study show relatively good agreement with those from existing physical and numerical experiments. As a result of the simulation by changing the porosity and intrinsic permeability of a porous medium and the kinematic viscosity of a fluid, the kinematic viscosity has the biggest effect on the non-linear behavior of the fluid flow in the porous medium.

The Premixed Flame in a Radiatively Active Porous Medium (복사열전달을 동반하는 다공성 매질내의 예혼합 화염)

  • 김정수;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.265-270
    • /
    • 1989
  • The present study considers the thermal structure variation in a porous medium caused by changing the most important radiative property of porous medium, absorption coefficient, as well as altering the physical dimension of porous medium and the equivalence ratio of premixed gas mixture. The radiation model was introduced as an unsteady differential form using the two-flux gray radiation model. The role of the conductive heat transfer through both gas phase and porous medium was found to be almost insignificant compared with that of the radiative heat transfer. The reaction zone shifted upstream and the flame thickness decreased as either the geometrical length of porous medium increased or the absorption coefficient decreased.

Comparison between Soil Drainage Experiment and Finite Element Analysis for Air Diffusion in Multiphase Porous Media (다공성 매질내의 공기압 확산에 대한 실내 배수시험과 유한요소해석 비교분석)

  • Kim, You-Seong;Kim, Jae-Hong;Kim, Tae-Heon;Lee, Jin-Kwang
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.77-85
    • /
    • 2014
  • The paper presents comparison between numerical and experimental results to verify finite element algorithm of air diffusion in three-phase porous media. The theory of two-phase flow in partially saturated soil is a fundamental study to predict the safety for $CO_2$ sequestration. Geotechnical engineering problems exposed to atmospheric pressure generally assume that air pressure is equal to zero in three-phase porous media, but the geotechnical engineering problem at a depth of about over 1 km needs to be considered in connection with deformable solid skeleton due to air pressure. Therefore, the objective of this study is to validate the numerical algorithm by comparing with results obtained from measurement of air diffusion and dissipation through drainage test.