• Title/Summary/Keyword: 다공보

Search Result 164, Processing Time 0.029 seconds

Preparation and Characterization of Conducting Composites Impregnated with Thick Polyheterocyclic Polymers (전도성 복합소재의 합성과 특성연구)

  • Park, Jun-Seo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.342-347
    • /
    • 1998
  • Light-weight conductive polymer composites were prepared by incorporating polyheterocycles such as polypyrrole and polythiophene into pores of a highly porous cross-linked polystyrene, host polymer, to form a conductive network. The highly hydrophobic and porous host polymer was synthesized by concentrated emulsion polymerization method. Polypyrrole-based composites, prepared by employing ferric chloride-methanol system, showed a conductivity as high as 0.82 S/cm. Conductivity of polythiophene-based composites, prepared from ferric chloride-acetonitrile system, was 6.05 S/cm. Conductivity of compositivity was influenced by the initial molar ratio of oxidant to monomer as well. SEM micrographs of the composites showed that conducting polymer coated uniformly the inside wall of the porous host polymer. Shielding effectiveness of the polypyrrole-based composites and of the polythiophene-based composites were 15.2 dB and 22.5 dB at 2.0 GHz, respectively. In the temperature range from 20 to 300K, a polypyrrole impregnated composite exhibited seimiconducting behavior and followed the variable range hopping(VRH) model for charge transport.

  • PDF

Short-term Sustained Release Formulation of KC-6620 with Porous Carrier (다공성 증량제를 이용한 KC-6620 단기용출지연입제의 제제)

  • Yu, Ju-Hyun;Park, Chang-Kyu;Lee, Byung-Hoi;Cho, Kwang-Yun
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.2
    • /
    • pp.155-162
    • /
    • 1992
  • In order to extend the releasing period of granular formulation to approximately 20 days, the KC-6620-adsorbed granules were formulated with carriers and polyethylene glycol as adjuvant. The releasing rates of active ingredient from the formulations were evaluated in aqueous medium. The baked bentonite was found most effective carrier to sustain the release of KC-6620. Due to, however, low releasing rate of active ingredient after 20 days, bentonite formulation appeared to be of no practical for the short-term sustained release of KC-6620. The increased pore volume of bentonite granular formulation by adding pyrophyllite increased remarkably the released amount of KC-6620 from bentonite-pyrophyllite(4 : 6) granule up to 85% of total active ingredient incorporated. Addition of polyethylene glycol to the bentonite-pyrophyllite granule further increased the releasing rate of KC-6620. With KC-6620 content in the bentonite-pyrophyllite(4 : 6) granule, the releasing rate of active ingredient was markedly reduced.

  • PDF

Fabrication of Ni Nanodot Structure Using Porous Alumina Mask (다공성 알루미나 마스크를 이용한 니켈 나노점 구조 제작)

  • Lim, Suhwan;Kim, Chul Sung;Kouh, Taejoon
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.4
    • /
    • pp.126-129
    • /
    • 2013
  • We have fabricated an ordered Ni nanodot structure using an alumina mask prepared via 2-step anodization technique under phosphoric acid. We have formed a porous structure with average pore size of 279 nm on $2{\mu}m$ thick alumina film and the thermal deposition of thin Ni film though the mask led to the formation of ordered Ni nanodot structure with an average dot size of 293 nm, following the pore structure on the mask. We further investigated the magnetic properties of the nanodot structure by measuring the hysteresis curve at room temperature. When compared to the magnetic properties of a continuous Ni film, we observed the decrease in the squareness and the increase in coercivity along the magnetization easy axis, due to the isolated nanodot structure. Our study suggests that the ordered nanodot structure can be easiy fabricated with thin film deposition technique using anodized alumina mask as a mask.

Fabrication of Micro-Porous Membrane via a Solution Spreading Phase Inversion Method (용액 퍼짐 상분리법을 통한 마이크로 기공 분리막 제조)

  • Choi, Ook;Park, Chul Ho
    • Membrane Journal
    • /
    • v.29 no.2
    • /
    • pp.105-110
    • /
    • 2019
  • Porous membranes are widely used in industry for removing particulate matter. Unlike conventional porous membrane fabrication methods, the solution spreading phase separation method can form pores very simply. The first step is to wet the mesh with the support layer, then to let the polysulfone solution flow into a solvent without water. The solvent is readily vaporized and the polysulfone is made into a thin film. When the polysulfone solution is mixed with water to form pores, the pore size can be adjusted according to the concentration ratio of the polysulfone solution. The thickness of the membrane is easily controlled by the concentration of the solution. The porous separator has the formation of meshes intact and is very useful for forming a three-dimensional structure. The solution spreading phase separation method proposed in this study is characterized by its high cost competitiveness compared with conventional membranes due to its low production cost and easy process control.

A Study on the External Insulation of Missile Surface (미사일 외면의 열 방호 단열재 연구)

  • Park, Byeong-Yeol;Ryoo, Moon-Sam
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.53-59
    • /
    • 2006
  • This paper presents the IR-Lamp test results of evaluating heat protection performance and measuring of mechanical/thermal properties in the heat protection material of missile external surface. The results showed that increasing the contents of microballoons improved the heat protection performance, but the mechanical properties were deteriorated. Among the kinds of microballoons, Epoxy/Phenolic Microballoons mixture showed the best mechanical properties and low thermal conductivity. Epoxy/Cork mixture showed the best heat protection in the IR-Lamp test, though it has low mechanical properties and high thermal conductivity.

진공 부품용 플라즈마 전해산화 피막 제조 및 특성 평가

  • Min, Gwan-Sik;Lee, Seung-Su;Yun, Ju-Yeong;Sin, Yong-Hyeon;Cha, Deok-Jun;Gang, Du-Hong;Seong, Gi-Hun;Kim, Seong-Cheol;O, Eun-Sun;Kim, Jin-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.122.2-122.2
    • /
    • 2013
  • 플라즈마 전해산화(plasma electrolytic oxidation) 기술을 이용하여 제작한 산화 피막은 피막의 하층부(기지 금속과 접해 있는 부분)는 ${\alpha}$-phase의 산화물이 대부분을 이루고 있으며, 기지 금속과의 접착성도 뛰어나다. 하지만 피막의 표면이 거칠고, 다공성을 띄는 특징을 보인다. 본 연구에서는 피막의 거칠기와 다공성을 제어하기 위한 방법으로 전해액에 포함된 불순물(Si, P 등) 조성비의 변화에 초점을 맞췄으며, 불순물(Si, P 등)의 조성비를 변화시켜 가면서 실험을 진행하였다. 실험에는 60 Hz, 35 kW(700 V, 50 A)의 power supply가 사용되었다. 또한, 실험의 결과로 제작된 시편의 내전압(10 V/s), 내플라즈마(200 W, 10 min, Ar 5 sccm, 200 mTorr), 내화학성(HCl 36.46 wt%, 120 min) 테스트를 진행하였으며, 실험 결과를 바탕으로 ${\phi}300$ 대면적 시편의 제작도 완료하였다.

  • PDF

Numerical Analysis of Heat Transfer and Fuel Conversion for MCFC Preconverter (MCFC 프리컨버터 촉매의 열전도특성과 연료전환율 해석)

  • Byun, Do-Hyun;Sohn, Chang-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.425-430
    • /
    • 2012
  • In this study, a preconverter of an MCFC for an emergency electric power supplier is numerically simulated to increase the hydrogen production from natural gas (methane). A commercial code is used to simulate a porous catalyst with a user subroutine to model three dominant chemical reactions-steam reforming, water-gas shift, and direct steam reforming. To achieve a fuel conversion rate of 10% in the preconverter, the required external heat flux is supplied from the outer wall of the preconverter. The calculated results show that the temperature distribution and chemical reaction are extremely nonuniform near the wall of the preconverter. These phenomena can be explained by the low heat conductivity of the porous catalyst and the endothermic reforming reaction. The calculated results indicate that the use of a compact-size preconverter makes the chemical reaction more uniform and provides many advantages for catalyst maintenance.

Cohesion and Internal Friction Angle of Basalts in Jeju Island (제주도 현무암의 점착력과 내부 마찰각)

  • Yang, Soon-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.33-40
    • /
    • 2015
  • Volcanic rocks in Jeju Island indicate the differences in geological and mechanical characteristics from region to region, and have vesicular structure caused by various environmental factors. In this study, triaxial compressive strength tests were conducted for intact rocks sampled in northeastern onshore and offshore, southeastern offshore and northwestern offshore of Jeju Island. The estimated cohesion and internal friction angle from the results of triaxial compression tests were compared and analyzed with absorption, a parameter representing the vesicular properties of basalts in Jeju Island. As a result, it was found that the relationship between cohesion and absorption could be classified clearly, considering two different linear relationships in bulk specific gravity and absorption. As the absorption increases, the cohesion decreases exponentially. In addition, the internal friction angle decreases almost linearly with increasing in the absorption, regardless of the relationships in bulk specific gravity and absorption.

Synthesis of porous-structured (Ni,Co)Se2-CNT microsphere and its electrochemical properties as anode for sodium-ion batteries (다공성 구조를 갖는 (Ni,Co)Se2-CNT microsphere의 합성과 소듐 이차전지 음극활물질로서의 전기화학적 특성 연구)

  • Yeong Beom Kim;Gi Dae Park
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.178-184
    • /
    • 2023
  • Transition metal chalcogenides have garnered significant attention as anode materials for sodium-ion batteries due to their high theoretical capacity. Nevertheless, their practical application is impeded by their limited lifespan resulting from substantial volume expansion during cycling and their low electrical conductivity. To tackle these issues, this study devised a solution by synthesizing a nanostructured anode material composed of porous CNT (carbon nanotube) spheres and (Ni,Co)Se2 nanocrystals. By employing spray pyrolysis and subsequent heat treatments, a porous-structured (Ni,Co)Se2-CNT composite microsphere was successfully synthesized, and its electrochemical properties as an anode for sodium-ion batteries were evaluated. The synthesized (Ni,Co)Se2-CNT microsphere possesses a porous structure due to the nanovoids that formed as a result of the decomposition of the polystyrene (PS) nanobeads during spray pyrolysis. This porous structure can effectively accommodate the volume expansion that occurs during repeated cycling, while the CNT scaffold enhances electronic conductivity. Consequently, the (Ni,Co)Se2-CNT anode exhibited an initial discharge capacity of 698 mA h g-1 and maintained a high discharge capacity of 400 mA h g-1 after 100 cycles at a current density of 0.2 A g-1.

Effect of pore size distribution in micro porous layer using pore forming agents under various dying conditions on PEMFC performance (건조조건 변화에 따른 미세기공층 내의 기공분포 변화가 고분자 전해질 연료전지 성능에 미치는 영향)

  • Chun, Jeong Hwan;Jo, Dong Hyun;Park, Ki Tae;Kim, Sung Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.71.1-71.1
    • /
    • 2010
  • 고분자 전해질 연료전지(PEMFC) 내의 기체확산층(GDL)은 셀 내의 물 관리에 중요한 역할을 수행한다. 일반적으로 다공성 기제(GDBL) 위에 미세기공층(MPL)을 코팅한 2층 구조의 기체확산층이 사용되는데, 이 미세기공층은 카본파우더와 테프론의 혼합물로 이루어져 있으며 촉매층에서 발생한 물을 셀 밖으로 빠르게 배출하는 역할을 수행한다. 본 연구에서는 다양한 기공분포를 갖는 미세기공층을 제조하여 고분자 전해질 연료전지 성능에 미치는 영향을 분석하였다. 미세기공층 슬러리내에 암모늄염 계열의 기공형성제를 혼합하여 다공성 기제 위에 코팅한 후 다양한 온도조건에서 건조함에 따라 기공분포가 다른 미세기공층을 제조하였다. 이렇게 제조된 미세기공층의 물성은 수은기공도계, FE-SEM, 자체적으로 제조한 기체투과도 측정 장치를 사용하여 측정하였으며, 단위 전지 성능 측정은 두 개의 가습조건(RH100%, RH50%)에서 실시하였다. 기공분포 측정결과 건조온도가 높은 미세기공층은 건조온도가 낮은 미세기공층에 비해 직경이 1,000 - 20,000 nm 인 대공극(macropore)의 수가 많지만, 직경이 100 nm 이하의 미세공 (micropore)의 수가 적은 것을 확인하였다. 전지성능 측정 결과 고가습 조건 (RH100%)에서는 미세공 (micropore)이 발달한 미세기공층을 포함한 기체확산층을 사용한 경우 가장 우수한 성능을 보여고, 저가습 조건 (RH50%)에서는 대공극 (macropore)이 발달한 미세기공층을 포함한 기체확산층을 사용한 경우 가장 우수한 성능을 나타내었다. 이는 물배출에 유리한 미세공 (micropore)의 성질과 원료 기체의 이동에 유리한 대공극(macropore)의 성질에 의한 것으로 판단된다. 따라서 셀 운전 가습조건에 따라 최적화된 기공구조를 갖는 미세기공층을 사용함으로써 셀 운전 성능을 향상 시킬 수 있을 것으로 예상된다.

  • PDF