• Title/Summary/Keyword: 다공률

Search Result 171, Processing Time 0.028 seconds

A study on the absorption coefficient of an artificial perforated material (인위적 다공물질의 흡음특성 연구)

  • Pyo, Sun-Chan;Yun, Seok-Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.19-29
    • /
    • 1987
  • The absorption coefficients of various length bundles of straws simulating perforated material were studied both theoretically and experimentally. For the theoretical predictions Zwikker and Kosten's theory was modified by adapting Biot's theory based on Poiseuille flow. The experimental data were collected using an impedance tube where the attenuation along the length of the tube was considered. The theoretically predicted values agreed very well with the experimentally measured ones for frequencies lower than 700Hz with bundles shorter than 120mm in length placed against the rigid end of the impedance tube. Configurations with an air gap between the end of a bundle and the rigid end were also investigated. Absorption coefficients were higher for 150mm bundles than for those of combined/air gap configurations with a total length of 150mm. Also for the fixed bundle lengths, absorption was found to increase with increasing air gap.

  • PDF

Theoretical Investigation on the Stress-Strain Relationship for the Porous Shape Memory Alloy (기공을 갖는 형상기억합금의 응력 및 변형률 관계에 대한 이론적 고찰)

  • Lee Jae-Kon;Yum Young-Jin;Choi Sung-Bae
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.8-13
    • /
    • 2004
  • A new three-dimensional model fur stress-strain relation of a porous shape memory alloy has been proposed, where Eshelby's equivalent inclusion method with Mori-Tanaka's mean field theory is used. The predicted stress-strain relations by the present model are compared and show good agreements with the experimental results for the Ni-Ti shape memory alloy with porosity of 12%. Unlike linear stress-strain relations during phase transformations by other models from the literature, the present model shows nonlinear stress-strain relation in the vicinity of martensite finish region.

Multi-scale simulation of drying process for porous materials using molecular dynamics (part 1 : homogenization method) (분자동역학을 이용한 다공성 물질 건조공정 멀티스케일 시뮬레이션(1부 : 균질화법 해석))

  • 오진원;백성민;금영탁
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.3
    • /
    • pp.115-122
    • /
    • 2004
  • When porous materials are dried, the particles flocculate into fish-net structure in gel phase. In order to exactly analyze the stress distribution of porous materials during drying process, the elastic tensor of microscopic gel structures has to be predicted considering pore shapes as well as porosities of porous materials. The elastic characteristics of porous materials associated with porosities were predicted analyzing microscopic gel structures with circular and cross pores via homogenization method and the drying processes of the electric porous ceramic insulator were simulated using finite element method (FEM). Comparing analysis results between consideration and negligence of pores, the deformed shape and distributions of temperature and moisture were similar but the residual stress was significantly different.

Development of Porous Media for Sewage Treatment by Pyrolysis Process of Food Wastes with Loess (음식물 쓰레기 및 황토 혼합물의 열분해를 통한 수질정화용 다공성 담체 개발)

  • Kim, Sang-Bum;Lee, Myong-Hwa;Kim, Yong-Jin;Park, Chul-Hwan;Lee, Jong-Rae;Kim, Gyung-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.289-296
    • /
    • 2007
  • Porous media for sewage treatment were developed through a pyrolysis process of food wastes with loess in the study. This work was carried out in two consecutive stages; in the first stage, new porous media were prepared through a high temperature pyrolysis process, and then the resultant media were applied to a simple lab-scale sewage treatment process in the second stage. To determine the optimum operating conditions of pyrolysis and mixing ratio of materials, physical properties such as specific surface area, porosity and compressive strength of final products were analyzed. The removal efficiencies of TOC and COD were measured to evaluate the effectiveness of resultant porous media. As a result of the experiment, we found that the best mixing ratio of food wastes to loess was 1 : 1 at $1,100^{\circ}C$. Average porosity of the developed media was 37.0%, in which pore size ranged from 1 to $20{\mu}m$, showing quite vigorous microbial activation. After immersing the media into a reactor for sewage treatment for eight days, removal efficiencies of TOC and COD were 87.3% and 85.0%, respectively.

Low frequency sound absorption improvement in refrigerator using multi perforated plate (다공판을 활용한 냉장고 저주파 흡음개선)

  • Ho-Jin, Kwon;Hyoung-Jin, Kim;Kyungjun, Song;Tae-hoon, Kim;Junhyo, Koo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.723-729
    • /
    • 2022
  • In this study, the multi perforated plate is used to reduce the compressor noise in the low frequency band inside the refrigerator machine room. To predict the sound absorption results, the impedance of the sound absorption material is measured. Using the measured impedance results, it is confirmed that the results used for FEM analysis is almost similar to the experimental values. The sound-absorbing structure that can operate in the target frequency band inside the refrigerator machine room is designed by controlling the hole diameter and arrangement in the perforated plate. The effect of reducing noise in the low frequency band is confirmed by applying perforated plate-based sound absorbing structures to the machine room.

Muffler Analysis Associated with the Porosity Changes of the Perforated Plate (다공판 공극률에 따른 머플러 소음성능 해석 및 평가)

  • Bae, Kyeong-Won;Jeong, Weui-Bong;Ahn, Se-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.679-681
    • /
    • 2014
  • By this time, the study of mufflers has been progressed a lot. However, we don't have enough information about what some factors in muffler have an influence on transmission loss. So, we examined the tendency of the transmission loss depending on the porosity of perforated plates. We tested mufflers currently in use and changed porosity of perforated plates in mufflers to find out tendency of the transmission loss. As a result, the tendency of the transmission loss was shown differently depending on the position of perforated plate.

  • PDF

3-Dimensional ${\mu}m$-Scale Pore Structures of Porous Earth Materials: NMR Micro-imaging Study (지구물질의 마이크로미터 단위의 삼차원 공극 구조 규명: 핵자기공명 현미영상 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2009
  • We explore the effect of particle shape and size on 3-dimensional (3D) network and pore structure of porous earth materials composed of glass beads and silica gel using NMR micro-imaging in order to gain better insights into relationship between structure and the corresponding hydrologic and seismological properties. The 3D micro-imaging data for the model porous networks show that the specific surface area, porosity, and permeability range from 2.5 to $9.6\;mm^2/mm^3$, from 0.21 to 0.38, and from 11.6 to 892.3 D (Darcy), respectively, which are typical values for unconsolidated sands. The relationships among specific surface area, porosity, and permeability of the porous media are relatively well explained with the Kozeny equation. Cube counting fractal dimension analysis shows that fractal dimension increases from ~2.5-2.6 to 3.0 with increasing specific surface area from 2.5 to $9.6\;mm^2/mm^3$, with the data also suggesting the effect of porosity. Specific surface area, porosity, permeability, and cube counting fractal dimension for the natural mongolian sandstone are $0.33\;mm^2/mm^3$, 0.017, 30.9 mD, and 1.59, respectively. The current results highlight that NMR micro-imaging, together with detailed statistical analyses can be useful to characterize 3D pore structures of various porous earth materials and be potentially effective in accounting for transport properties and seismic wave velocity and attenuation of diverse porous media in earth crust and interiors.

Prediction of Near-Field Dilution Changes Due to Treatment Capacity Expansion of Masan-Changwon Municipal Wastewater Treatment Plant (마산.창원 하수종말처리장 증설에 따른 근역희석률변화 예측)

  • 유승협
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.2
    • /
    • pp.53-69
    • /
    • 2000
  • For the case of the capacity increase of Masan-Changwon wastewater treatment plant, the changes of near-field dilution rates due to the increased discharges into Masan Bay from the submerged multipart-diffuser were predicted by using CORMIX model. As the increase of wastewater discharges from currently 280,000 m3f day to 720,000 m3fday by 2011, the dilution rates become much lower than the present rates. To enhance the reduced dilution rates, the engineering design changes of diffuser length and alignment were considered as an optimal engineering option. According to the results of the model simulations for these changes, the dilution rates were increased in the strong ambient current of spring tide, but they were not affected by these changes in the weak current of neap tide in Masan Bay. From the analysis of oceanographic survey data, new outfalls sites have been searched. A promising outfalls site is selected and proposed on the basis of maximum obtainable dilution rates predicted by the model simulations.

  • PDF

The Effect of Pore Sizes on Poly(L-lactide-co-glycolide) Scaffolds for Annulus Fibrosus Tissue Regeneration (조직공학적 섬유륜재생을 위한 PLGA 지지체 제조시 다공크기의 영향에 관한 연구)

  • So, Jeong-Won;Jang, Ji-Wook;Kim, Soon-Hee;Choi, Jin-Hee;Rhee, John-M.;Min, Byung-Hyun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.516-522
    • /
    • 2008
  • Biodegradable polymers have been used extensively as scaffolding materials to regenerate new tissues and the ingrowth of tissue have been reported to be dependent directly of the porosity, pore diameter, pore shape, and porous structure of the scaffold. In this study, porous poly (L-lactide-co-glycolide) (PLGA) scaffolds with five different pore sizes were fabricated to investigate the effect of pore sizes for AF tissue regeneration. Cellular viability and proliferation were assayed by MTT test. Hydroxyproline/DNA content of AF cells on each scaffold was measured. sGAG analyses were performed at each time point of 2 and 6 weeks. Scaffold seeded AF cells were implanted into the back of athymic nude mouse to observe the difference of formation of disc-like tissue depending on pore size in vivo. We confirmed that scaffold with $180{\sim}250{\mu}m$ pores displayed high cell viability in vitro and produced higher ECM than scaffold with other pore sizes in vivo.

Characterization of PVdF/Laponite Reinforced Composite Membranes for PEMFC Surpport (PEMFC 지지체용 PVdF/Laponite 강화 복합막의 특성평가)

  • Oh, Seul-Gi;Hwang, Hae-Young;Kim, Hyoung-Juhn;Nam, Sang-Yong
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.159-168
    • /
    • 2010
  • In this study, high porous PVdF flat sheet membranes were prepared to obtain reinforced membrane support for polymer electrolyte membrane fuel cell. Nano-size laponite was randomly dispersed in the membranes to improve mechanical property which lowered by the high porosity. The morphology and porosity of prepared PVdF/Laponite composite membranes were examined using the SEM analysis and the weight method and all membranes showed over 60% porosity. The membrane thermal stability depending on the laponite contents in the composite membranes was evaluated by membrane heat shrinkage at $105^{\circ}C$ and $135^{\circ}C$. MD and TD heat shrinkage of the PVdF composite membrane containing 5 wt% laponite was 2~3% and 2~3.5% at $135^{\circ}C$, respectively. The mechanical strength was enhanced after incorporating laponite particles and 30% increase in the modulus compared to pure PVdF membrane was obtained.