• Title/Summary/Keyword: 능동 컴플라이언스 제어

Search Result 3, Processing Time 0.021 seconds

Active Compliance Control for the Rehabilitation Robot with Cable Driven Transmission (케이블 구동 메커니즘을 이용한 재활 로봇의 능동 컴플라이언스 제어)

  • Kang, Sang-Hoon;Chang, Pyung-Hun;Park, Hyung-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1823-1832
    • /
    • 2004
  • In this paper, we proposed a TDC based F/T sensorless active compliance control algorithm for a rehabilitation robot (KARES II). The preference of compliance of the disabled is presented by clinical testing at Korea National Rehabilitation Center with the disabled. The KARES II was designed to work 12 predefined tasks which are very essential for helping the disabled. Among the tasks, some contact tasks between the robot and the disabled exist. Therefore, TDC based F/T sensorless compliance control algorithm is developed for these tasks without additional cost. We verified the proposed algorithm with experiment. Also for the practical use, suitable compliance for contact tasks is chosen by clinical testing at Korea National Rehabilitation Center.

Active Compliance Control of Constrained Flexible Manipulators (구속받는 유연 매니플레이터의 능동적 컴플라이언스 제어)

  • 김진수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • In this paper, we discuss the control scheme on active compliance control of flexible manipulators. The active compliance control scheme is extended from the scheme for rigid manipulators. To illustrate the validity of the proposed control scheme, we show experimental results for the case when the end-effector is not moving and when it is moving while applying force. Although flexible manipulators show some problems of stability yet it is clear from these results that flexible manipulators are more effective to reduce damage of environment because of link flexibility than rigid ones.

Auto Path Generation and Active Compliance Force Control Using 3-axis Grinding Robot (3축 그라인딩 로봇을 이용한 자동 경로 생성 및 능동 컴플라이언스 힘 제어)

  • Choo, Jung-Hoon;Kim, Soo-Ho;Lee, Sang-Bum;Kim, Jung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1088-1094
    • /
    • 2006
  • In this paper, an auto path generation and an active compliance grinding control using 3-axis farce sensor are presented. These control algorithms enable the grinding robot to follow unknown path of various workpiece shape pattern. The robot is able to go grinding along unknown paths by position controller managing tangential direction angle and cutting speed, with only information about the start position and the end position. Magnitude and direction of normal force are calculated using force data that go through low pass filter. Moreover, normal and tangential directions are separated for force control and velocity control, respectively.