• Title/Summary/Keyword: 능동진동제어 시스템

Search Result 165, Processing Time 0.029 seconds

Optimal Transducer Positions of an Active Noise Control System with an Opening in an Enclosure (개구부를 가지는 실내의 능동소음제어시스템의 최적 트랜스듀서 위치)

  • 백광현
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.157-163
    • /
    • 2004
  • Optimal transducer positions are important as much as the control algorithms and hardware performance in the active noise control system. This study is similar to the past researches on the optimal transducer locations but with a far field noise source having a plane wave characteristic and the noise coming through an opening such as a window in an enclosure. Optimization techniques are used to find sets of optimal loudspeaker positions from a larger possible loudspeaker positions. Loudspeakers are placed on the surface of opening at the wall and inside of the enclosure. Using the measured acoustic transfer impedances and numerical simulations with the optimization technique, optimal positions are identified and compared. When a small number of loudspeakers are used. loudspeaker positions on the opening near the center seems to be the best place, but when a larger number of loudspeakers are used it was difficult to find simple patterns in the optimal positions. With the optimally positioned loudspeakers, optimal microphone positions are also studied.

Optimal Loudspeaker Positions of an Active Noise Control System with an Opening in an Enclosure (개구부를 가지는 실내의 능동소음제어시스템에서의 최적스피커 위치)

  • 백광현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.788-791
    • /
    • 2003
  • Optimal loudspeaker positions are important as much as the control algorithms and hardware performance in the active noise control system. This study is similar to the past researches on the optimal transducer locations but with a far field noise source having a plane wave characteristic and the noise coming through an opening such as a window in the enclosure. An optimization technique called simulated annealing algorithm is used to find a set of optimal loudspeaker positions from a larger possible loudspeaker positions. Loudspeakers are placed on the surface of opening at the wail. Using the measured acoustic transfer impedances and numerical simulations with the optimization technique, optimal positions we identified and compared. When a small number of loudspeakers are used, loudspeaker positions on the opening near the center seems to be the best place, but when a larger number of loudspeakers are used it was difficult to find simple patterns Un the optimal positions.

  • PDF

LRB-based hybrid base isolation systems for cable-stayed bridges (사장교를 위한 LRB-기반 복합 기초격리 시스템)

  • Jung, Hyung-Jo;Park, Kyu-Sik;Spencer, Billie-F.Jr.;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.63-76
    • /
    • 2004
  • This paper presents LRB-based hybrid base isolation systems employing additional active/semiactive control devices for mitigating earthquake-induced vibration of a cable-stayed 29 bridge. Hybrid base isolation systems could improve the control performance compared with the passive type-base isolation system such as LRB-installed bridge system due to multiple control devices are operating. In this paper, the additional response reduction by the two typical additional control devices, such as active type hydraulic actuators controlled by LQG algorithm and semiactive-type magnetorheological dampers controlled by clipped-optimal algorithm, have been evaluated bypreliminarily investigating the slightly modified version of the ASCE phase I benchmark cable-stayed bridge problem (i.e., the installation of LRBs to the nominal cable-stayed bridge model of the problem). It shows from the numerical simulation results that all the LRB based hybrid seismic isolation systems considered are quite effective to mitigate the structural responses. In addition, the numerical results demonstrate that the LRB based hybrid seismic isolation systems employing MR dampers have the robustness to some degree of the stiffness uncertainty of in the structure, whereas the hybrid system employing hydraulic actuators does not. Therefore, the feasibility of the hybrid base isolation systems employing semiactive additional control devices could be more appropriate in realfor full-scale civil infrastructure applications is clearly verified due to their efficacy and robustness.

Characteristics and Dynamic Modeling of MR Damper for Semi-active Vibration Control (준능동 진동 제어를 위한 MR 감쇠기의 동적 모델링을 통한 특성분석)

  • Heo, Gwang-Hee;Jeon, Seung-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.61-69
    • /
    • 2013
  • This research is aimed to evaluate characteristics and dynamic modeling of MR damper for semi-active vibration control. A MR damper of semi-active type was designed and made for the purpose of controlling the vibration of a real-size model structure. Usually a semi-active control system equipped with a MR damper requires a dynamic model which expresses numerical data about the damping capacity and dynamic characteristics generated by a MR damper. To fulfil the requirement, a Power model and a Bingham model were particularly employed among many dynamic models of MR damper. Those models being contrasted with other ones, a dynamic test was carried out on the developed MR damper. In the test, excitation frequencies were conditioned to be 0.15 Hz, 1.0 Hz, and 2.0 Hz, and three different currents were adopted for each frequency. From these test results, it was found that displacement affected control capacity of the MR damper. The test results led to the identification of model variables for each dynamic model, on the basis of which a force-speed relation curve and expected damping force were derived and contrasted to those of the developed MR damper. Therefore, it was proven that the MR damper designed and made in this research was effective as a semi-active controller, and also that displacement of 2mm at minimum was found to be secured for vibration control, through the test using various displacements.

Active vibration control of the secondary suspension for the magnetic levitation vehicle (자기부상열차 현가장치의 능동진동제어)

  • 강정식;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.876-879
    • /
    • 1996
  • The vibration of an attractive magnetic levitation(Maglev) vehicle transportation system is caused by the irregularity of the guideway track and the performance of the suspensions of the Maglev system. It is essential for us to give attention to the secondary suspension of the vehicle system as it determines the ride quality. In order to improve the ride quality and running stability, active secondary suspensions have been developed and applied to the vibration problems. This paper analyzes the performance of the active secondary suspension which is applied to an attractive magnetic levitation vehicle system running on a rough track. The dynamics of the suspension system and the optimal control problems are studied. According to the transient and frequency response analyses to the track disturbance, the ride quality of an attractive Maglev vehicle has been improved by applying the designed LQR active controller, and it has been confirmed that this improvement was also influenced by the configuration of the system.

  • PDF

A Study on Reducing Vibration of Washing Machine Using Gyroscope System (자이로스코프 시스템을 이용한 드럼 세탁기의 진동 저감 연구)

  • Na, Gyusung;Park, Youngjin;Park, Youn-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.117-122
    • /
    • 2014
  • A novel method to reduce the vibration of drum type washing machine is proposed. Recently, as the capacity of the drum-type washing machine gets expanded and its washing performance is improved, its market share is increasing in the whole world. But, the capacity of washing machine is limited because of door size and built-in washing machine size. The vibration of washing machine is caused by unbalanced cloths in high spining drum, and the displacement of tub is maximized at transient range about 3 Hz(180 rpm). Previous researches were concerned about steady-state vibration in spinning. In this study, concerned about transient vibration and the displacement of tub is decreased by using gyroscope system. Mutibody dynamic model of washing machine include gyroscope is designed and the vibration of tub have been reduced by 44.7 % over original.

Active vibration control of multi-point mounting systems with flexible structures (유연구조물이 있는 다점지지 시스템의 능동진동제어)

  • Oh, Shi-Hwan;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.274-279
    • /
    • 2000
  • Driving of the engine makes unbalance forces which induces vibration to the engine mount system. Active vibration control must be performed to reduce the vibration and the propagation of structure-born sound. In this study, the engine system is modeled as 3-dim. vibration system including flexible structures and an effective active noise control method is proposed. Also, appropriate actuator and sensor locations and types are selected. The miniature of the engine vibration system with multi-input multi-output is built and an active vibration control with multiple filtered-X LMS algorithm is applied to it. The applied control method was effective to reduce the transmitted vibration power through the rubber mount It showed the feasibility of the control of the engine vibration systems with flexible structures.

  • PDF

Development of the Semi-Active Controlled Variable Damper System for Passenger Vehicles (승용차용 반능동형 가변댐퍼 시스템의 개발)

  • 허승진;심정수;황성호
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.683-689
    • /
    • 1998
  • A control algorithm for multi-stage dampers is developed based on the mode skyhook control concept, and implemented on the full vehicle system environment. The test vehicle system is equipped with the real time controller, four-stage variable dampers and sensors. The real time controller is developed using a digital signal processor(DSP), digital I/O, A/D and D/A converters. The dampers are driven by the electromagnetic actuators of less than 20 msec response time. The sensors include accelerometers, relative displacement transducers, and steering wheel rate sensors, etc. Through a series of tests in laboratory and proving ground, the performance of the semi-active suspension system is evaluated and it is shown that the vehicle dynamic characteristics is improved with the developed damping system. Futhermore, the parameter tuning methods to enhance vehicle dynamic performance are propsoed.

  • PDF

Optimal Design of a Hybrid Structural Control System using a Self-Adaptive Harmony Search Algorithm (자가적응 화음탐색 알고리즘을 이용한 복합형 최적 구조제어 시스템 설계)

  • Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.301-308
    • /
    • 2018
  • This paper presents an optimal design method of a hybrid structural control system considering multi-hazard. Unlike a typical structural control system in which one system is designed for one specific type of hazard, a simultaneous optimal design method for both active and passive control systems is proposed for the mitigation of seismic and wind induced vibration responses of structures. As a numerical example, an optimal design problem is illustrated for a hybrid mass damper(HMD) and 30 viscous dampers which are installed on a 30 story building structure. In order to solve the optimization problem, a self-adaptive Harmony Search(HS) algorithm is adopted. Harmony Search algorithm is one of the meta-heuristic evolutionary methods for the global optimization, which mimics the human player's tuning process of musical instruments. A self-adaptive, dynamic parameter adjustment algorithm is also utilized for the purpose of broad search and fast convergence. The optimization results shows that the performance and effectiveness of the proposed system is superior with respect to a reference hybrid system in which the active and passive systems are independently optimized.

Performance Evaluation of the New Smart Passive Control Device using Shaking Table Test (진동대 실험을 통한 신개념 스마트 수동제진장치의 제진성능 평가)

  • Jang, Dong-Doo;Jung, Hyung-Jo;Moon, Seok-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.27-35
    • /
    • 2010
  • This paper presents the vibration control performance of the smart passive control system to suppress the undesired vibration of the structure subjected to the earthquake loadings. Smart passive control system is the MR damper-based control system augmented with electromagnetic induction(EMI) device which consists of permanent magnets and solenoid coils. According to the Faraday's law of electromagnetic induction, an EMI device produces electrical energy from the mechanical energy due to the reciprocal motions of the structure and provide it to the MR damper. The smart passive control system can be the simple and easy to implement and maintain control system by replacing the feedback control system including sensors, controllers and external power sources of the conventional MR damper-based semiactive control system with the EMI device. The control performance of the smart passive control system is evaluated through the set of shaking table test considering the various historical earthquake loadings.