• 제목/요약/키워드: 뉴스 기사 클러스터링

검색결과 10건 처리시간 0.038초

트위트 이형 정보 망을 이용한 뉴스 기사의 사용자 지향적 클러스터링 (User Oriented clustering of news articles using Tweets Heterogeneous Information Network)

  • 무하마드 쇼아입;송왕철
    • 인터넷정보학회논문지
    • /
    • 제14권6호
    • /
    • pp.85-94
    • /
    • 2013
  • 월드와이드 웹, 특히 web 2.0의 출현과 함께 뉴스 기사들의 양이 엄청나게 증가하면서 독자들이 그들의 요건에 맞춰 뉴스기사를 선택하는데 어려움이 있다. 이러한 문제를 해결하기 위해서 여러 클러스터링 메커니즘이 뉴스기사들을 분별하도록 제안되었다. 하지만, 이러한 기법들은 완전히 기계 지향적 기법들이고, 클러스터링의 멤버쉽을 결정하는 과정에 사용자의 참여가 제외되어 있다. 본 논문에서는 뉴스 기사 클러스터링 처리과정에서 참여문제를 해결하기 위해서, 객체들을 클러스터링하는 뉴스 기사와 트위터에 포스트하려는 사용자의 결정을 조합하므로써 뉴스 기사를 클러스터링하는 프레임워크를 제안한다. 우리는 이를 위해 트위터 해쉬-태그를 이용할 수 있도록 했다. 더욱이, 트윗된 글에 대한 리트윗 빈번도에 기반하여 사용자의 신용도를 계산하므로써, 클러스터링 멤버쉽 함수의 정확도를 개선시키려 한다. 제안된 방법에 대한 성능을 보이기 위해, 2013년도에 파키스탄에서 있었던 선거동안에 발생한 메시지를 이용했다. 우리의 결과를 통해 사용자의 결과를 이용하므로써, 일반 클러스터링보다 더 나은 결과물이 달성될 수 있음을 보였다.

개인 맞춤형 뉴스 추천 시스템의 설계 및 개발 (Design and Development of a Personalized News Recommendation System)

  • 유영서;이지민;이기용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 춘계학술발표대회
    • /
    • pp.599-602
    • /
    • 2016
  • 실시간으로 뉴스 기사를 제공하는 온라인 뉴스 시스템이 널리 사용되면서, 사람들은 매 순간 속보와 새로운 뉴스 등 대량의 뉴스 기사에 노출되어 있다. 하지만 방대한 뉴스들로부터 사용자가 원하는 뉴스를 찾는 것은 매우 어려운 일이다. 따라서 개인 관심사에 따라 뉴스를 추천해주는 개인 맞춤형 뉴스 추천 시스템의 필요성이 증가되고 있다. 본 논문에서는 사용자의 관심사를 분석하여, 사용자의 관심사에 따라 관련된 뉴스를 자동으로 추천해주는 뉴스 추천 시스템을 설계 및 개발한다. 제안 시스템은 각 사용자가 북마크한 뉴스 기사와 읽은 뉴스 기사를 클러스터링하여 사용자별 프로파일을 생성한다. 또한 전체 뉴스 기사들을 클러스터링하여 주제 별로 분류한다. 사용자에게 뉴스를 추천하기 위해, 제안 시스템은 해당 사용자 프로파일에 포함된 각 클러스터에 대해 전체 뉴스 기사에 대한 클러스터들 중 가장 가까운 클러스터를 찾아 해당 클러스터 내의 뉴스 기사들을 거리 순으로 추천한다. 실제 구현된 시스템을 통해, 제안한 뉴스 추천 시스템이 각 개인에게 뉴스를 효과적으로 추천함을 보인다.

사건중심 뉴스기사 자동요약을 위한 사건탐지 기법에 관한 연구 (A Study on an Effective Event Detection Method for Event-Focused News Summarization)

  • 정영미;김용광
    • 정보관리학회지
    • /
    • 제25권4호
    • /
    • pp.227-243
    • /
    • 2008
  • 이 연구에서는 사건중심 뉴스기사 요약문을 자동생성하기 위해 뉴스기사들을 SVM 분류기를 이용하여 사건 주제범주로 먼저 분류한 후, 각 주제범주 내에서 싱글패스 클러스터링 알고리즘을 통해 특정한 사건 관련 기사들을 탐지하는 기법을 제안하였다. 사건탐지 성능을 높이기 위해 고유명사에 가중치를 부여하고, 뉴스의 발생시간을 고려한 시간벌점함수를 제안하였다. 또한 일정 규모 이상의 클러스터를 분할하여 적절한 크기의 사건 클러스터를 생성하도록 수정된 싱글패스 알고리즘을 사용하였다. 이 연구에서 제안한 사건탐지 기법의 성능은 단순 싱글패스 클러스터링 기법에 비해 정확률, 재현율, F-척도에서 각각 37.1%, 0.1%, 35.4%의 성능 향상률을 보였고, 오보율과 탐지비용에서는 각각 74.7%, 11.3%의 향상률을 나타냈다.

문서 클러스터링을 이용한 문맥 광고 시스템 (Contextual Advertisement System based on Document Clustering)

  • 이동광;강인호;안동언
    • 정보처리학회논문지B
    • /
    • 제15B권1호
    • /
    • pp.73-80
    • /
    • 2008
  • 본 연구에서는 문서 클러스터링을 이용하여 동음 이의어와 핵심단어 선정 실패로 인해 발생하는 자동 광고 시스템의 오류를 해결하는 광고 키워드 추출방식을 제안한다. 먼저 대규모 뉴스기사를 대상으로 유사한 내용을 가지며 동일한 광고 키워드와 연관이 있는 기사들을 자동으로 분류하여 광고 키워드에 대한 문맥 정보를 구축한다. 또한 광고 대상물에 대한 광고주의 요약 정보나 광고 대상 웹페이지를 분석하여 광고 키워드에 대한 문맥 정보를 추출하는 방식을 보인다. 이렇게 구축된 문서 분류와 광고 키워드용 문맥 정보를 이용하여 광고 대상 문서가 속한 문서 분류를 추정하여 단어들의 의미적인 애매성을 해결하고, 추정한 문서 분류와 관련 있으면서 문맥적으로 중요성을 가지는 핵심 단어들을 선정하여 광고 키워드를 추출한다. 상용 광고 시스템과의 비교 분석 결과 신문 기사나 일반 블로그를 대상으로 최소 21%의 성능 향상을 얻었다.

단어 임베딩(Word Embedding) 기법을 적용한 키워드 중심의 사회적 이슈 도출 연구: 장애인 관련 뉴스 기사를 중심으로 (A Study on the Deduction of Social Issues Applying Word Embedding: With an Empasis on News Articles related to the Disables)

  • 최가람;최성필
    • 정보관리학회지
    • /
    • 제35권1호
    • /
    • pp.231-250
    • /
    • 2018
  • 본 논문에서는 온라인 뉴스 기사에서 자동으로 추출된 키워드 집합을 활용하여 특정 시점에서의 세부 주제별 토픽을 추출하고 정형화하는 새로운 방법론을 제시한다. 이를 위해서, 우선 다량의 텍스트 집합에 존재하는 개별 단어들의 중요도를 측정할 수 있는 복수의 통계적 가중치 모델들에 대한 비교 실험을 통해 TF-IDF 모델을 선정하였고 이를 활용하여 주요 키워드 집합을 추출하였다. 또한 추출된 키워드들 간의 의미적 연관성을 효과적으로 계산하기 위해서 별도로 수집된 약 1,000,000건 규모의 뉴스 기사를 활용하여 단어 임베딩 벡터 집합을 구성하였다. 추출된 개별 키워드들은 임베딩 벡터 형태로 수치화되고 K-평균 알고리즘을 통해 클러스터링 된다. 최종적으로 도출된 각각의 키워드 군집에 대한 정성적인 심층 분석 결과, 대부분의 군집들이 레이블을 쉽게 부여할 수 있을 정도로 충분한 의미적 집중성을 가진 토픽들로 평가되었다.

저널리즘 가치에 기초한 알고리즘을 이용한 뉴스 시각화 (A news visualization based on an algorithm by journalistic values)

  • 박대민;김기남;강남용;서봉원;하효지;온병원
    • 한국HCI학회논문지
    • /
    • 제9권2호
    • /
    • pp.5-12
    • /
    • 2014
  • 현재 온라인 뉴스 서비스는 선정적인 연성뉴스 중심으로 제공된다. 이에 따라 저널리즘 가치를 구현한 뉴스 서비스의 필요성이 대두되고 있다. 정보원과 공동 인용 여부에 따라 기사를 클러스터링하고 가중치를 부여해 사실성, 다양성, 심층성, 비판성 등 주요 저널리즘 가치를 구현한 알고리즘은 뉴스정보원연결망분석(news source network analysis)으로 제안된 바 있다. 본 연구는 이를 사용자 친화적으로 시각화한 서비스인 뉴스소스를 제안한다. 뉴스소스는 시간과 정보원에 따라 뉴스를 막대그래프 형식으로 어떤 토픽에 대해 분야별, 소속별로 얼마만큼의 중요도에 따라 논의되는지를 대조적으로 보여준다. 본 연구에서는 뉴스 아카이브인 카인즈의 기사를 활용해 뉴스소스의 베타 버전을 구현했다. (http://147.47.125.161/NSNA/ 에서 베타서비스 중이며, 구글 크롬에 최적화 되어있음)

특이값 분해와 점증적 클러스터링을 이용한 뉴스 비디오 샷 경계 탐지 (News Video Shot Boundary Detection using Singular Value Decomposition and Incremental Clustering)

  • 이한성;임영희;박대희;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권2호
    • /
    • pp.169-177
    • /
    • 2009
  • 본 논문에서는 뉴스 기사 분할 관점에서, 뉴스 비디오 샷 경계 탐지 알고리즘의 특성을 고려한 다음과 같은 설계 기준을 제시하고, 이를 모두 만족하는 새로운 샷 경계 탐지 알고리즘을 제안하고자 한다. 1) 뉴스 비디오 샷 경계 탐지의 재현율을 높임으로써, 앵커 샷 탐지 단계에서 입력으로 사용될 데이타의 오류를 최소화한다; 2) 급격한 장면 변환과 점증적 장면 변환을 하나의 알고리즘으로 탐지함으로써 한번의 데이타 탐색으로 샷 분할을 수행한다; 3) 분할된 샷들을 정적 샷과 동적 샷으로 분류함으로써 앵커샷 탐지 단계의 탐색 공간을 축소한다. 제안된 뉴스 비디오 샷 경계 탐지 알고리즘은 특이간 분해를 기반으로 점증적 클러스터링 알고리즘과 머서 커널을 결합한 구조로서, 위에서 제시한 기준을 모두 만족하도록 설계되었다. 제안된 방법론은 특이간 분해를 통해 특징 벡터의 차원축소 뿐만 아니라, 뉴스 비디오를 구성하는 연속적인 프레임에서의 잡음과 아주 작은 변화를 제거함으로써 분류 성능을 높일 수 있다. 또한 머서 커널의 도입은 쉽게 분류되지 않는 데이타를 고차원 공간으로 매핑함으로써 구분하기 어려운 샷 경계의 탐지 가능성을 높여준다. 실험을 통하여 제안된 방법론이 매우 높은 재현율을 보이며, 앵커 샷 탐지를 위한 탐색 공간 축소를 효과적으로 수행함을 보인다.

인터넷 게시물의 댓글 분석 및 시각화 (Analysis and Visualization for Comment Messages of Internet Posts)

  • 이윤정;지정훈;우균;조환규
    • 한국콘텐츠학회논문지
    • /
    • 제9권7호
    • /
    • pp.45-56
    • /
    • 2009
  • 오늘날 인터넷 사용자들은 블로그나 뉴스, 인터넷 게시판 등의 매체에서 댓글을 통해 다른 사람의 의견을 살피고 자신의 의견을 나타내고 있다. 그러나 현재 대부분의 블로그나 인터넷 포털 사이트의 경우 기사나 댓글들을 순차적인 목록 형태로 제공하므로 사용자가 원하는 내용의 댓글을 검색하거나 살펴보는 것은 힘든 일이다. 또한 댓글 사용자가 증가함에 따라 스팸 댓글이나 악플 등이 사회 문제가 되기도 한다. 본 논문에서는 다음 아고라(Daum AGORA) 웹 블로그의 게시글과 댓글을 통계적으로 분석하고 유사도를 기반으로 클러스터링하는 시스템을 제안한다. 본 시스템은 클러스터링 결과를 시각화하여 간단한 스크린 뷰(screen view)로 보여준다. 또한, 본 시스템은 생물정보학에서 잘 알려진 정렬 기법인 Needleman-Wunsch 알고리즘을 이용해 스팸 댓글을 필터링한다.

연관규칙을 이용한 뉴스기사의 계층적 자동분류기법 (Hierarchical Automatic Classification of News Articles based on Association Rules)

  • 주길홍;신은영;이주일;이원석
    • 한국멀티미디어학회논문지
    • /
    • 제14권6호
    • /
    • pp.730-741
    • /
    • 2011
  • 인터넷과 컴퓨터 기술이 발전함에 따라 정보의 양이 폭발적으로 증가하였으며 사용자의 다양한 요구가 생겨나게 되었다. 이로 인해 대용량의 문서를 효과적으로 분류하기 위한 다양한 방법의 연구가 필요하게 되었다. 기존의 문서 범주화는 분서의 분류를 위해 연관된 문서의 키워드를 중심으로 하는 방법을 사용하였다. 그러나 본 논문에서는 연관규칙을 이용하여 범주 내의 문서들 간에 연관성 있는 키워드들의 집합을 추출하고 각 범주 별로 의미적으로 대표성을 가진 키워드들로 분류 규칙을 생성한다. 또한 효율적인 키워드 생성을 위한 데이터 전처리 방안을 제시하고, 새로운 문서 범주를 예측한다. 프로파일의 분류성능을 높이기 위한 분류함수를 설계하고 실험을 통하여 성능을 측정한다. 마지막으로 평면적인 범주 구조에서 확장하여 계층적인 분류체계 구조에서도 적용할 수 있는 자동분류 방안을 제시한다.

다계층 이원 네트워크를 활용한 사용자 관점의 이슈 클러스터링 (User-Perspective Issue Clustering Using Multi-Layered Two-Mode Network Analysis)

  • 김지은;김남규;조윤호
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.93-107
    • /
    • 2014
  • 대부분의 인터넷 쇼핑몰은 자사 고객의 관심 분야를 파악하고 이를 상품 추천에 효과적으로 활용하기 위해 많은 노력을 기울이고 있다. 하지만 고객이 회원 가입 시 직접 입력한 개인 정보는 신뢰하기가 어렵고, 고객의 구매 패턴을 통해 파악한 관심 분야 정보는 자사 사이트 내에 진입한 이후에만 보인 한정된 패턴이라는 측면에서 해당 고객의 다양한 관심분야를 제대로 나타낸다고 보기 어렵다. 이러한 한계를 극복하기 위해 본 연구에서는 고객의 평소 인터넷 사용 기록을 통해 최근 방문 사이트들의 주제를 분석함으로써, 고객의 실제 관심 분야를 파악할 수 있는 방안을 제시하였다. 또한 토픽 분석을 통해 각 사이트의 주제를 도출하고 도출된 주제를 다시 동시 방문자 관점에서 군집화 함으로써, 고객 관점에서 의미가 있는 상위 수준의 새로운 테마를 발굴하기 위한 방법론을 제안하였다. 연구의 특징은 유사주제 중심의 군집화라는 기존 연구와는 달리 사용자 관점의 관심주제 중심 군집화라 할 수 있다. 향후 사용자 중심의 카테고리 설계를 비롯한 새로운 관점의 고객군 정의 등 보다 높은 차원의 마케팅 전략 수립에 활용이 가능할 것으로 기대된다. 사용자 관점의 이슈 군집화 과정은 크롤링, 토픽 분석, 액세스 패턴 분석, 네트워크 병합, 네트워크 변환 및 군집화와 같은 여섯 가지 주요단계로 구성되어있다. 이를 위해 텍스트 마이닝과 소셜 네트워크 분석 기법을 활용한 비정형 텍스트를 기반으로한 빅데이터의 활용 방법을 모색하였다. 제안 방법론의 실무 적용 가능성을 평가하기 위해, 국내 최대 포털 뉴스 사이트의 방문자 2,177명의 1년간 방문 기록과 뉴스기사 대한 분석을 수행하고 그 결과를 요약하여 제시하였다.