• 제목/요약/키워드: 뉴로-퍼지 제어기

검색결과 70건 처리시간 0.107초

뉴로퍼지 제어기를 이용한 고주파 유도 가열기의 시변부하에 대한 정전력 제어 (The power regulation of a High-Frequency Induction Heating System with time variance load using a neural fuzzy controller)

  • 장종승;김승철;임영도
    • 한국정보통신학회논문지
    • /
    • 제2권2호
    • /
    • pp.223-230
    • /
    • 1998
  • 본 논문은 뉴랄퍼지를 이용한 디지탈식 제어기를 고주파 유도 가열기의 전력 조절을 위해 IGBT를 사용한 위상 전이(Phase-Shift) 펄스폭 변조(PWM)와 펄스 주파수 변조(PFM)가 조절되는 공진 고주파 인버터를 응용한 유도가열기를 설명한다. 이는 실제로 산업 현장에서 20KHz~500KHz 유도 가열 및 유도 용해 전원 장치용으로 쓰인다. 위상 전이(Phase-Shift) PWM 정전력 조절 기술을 바탕으로 한 적응 주파수 추종 기법은 스위칭 손실을 최소화하고 전력조절을 용이하게 하기 위해 소개되어졌다. IGBT를 사용하여 실험적으로 만들어진 실험장치는 성공적으로 논증과 토의가 되어졌다.

  • PDF

적응 퍼지-뉴로 제어기를 이용한 IPMSM 드라이브의 최대토크 제어 (Maximum Torque Control of IPMSM Drive using Adaptive Fuzzy-Neuro Controller)

  • 김도연;고재섭;최정식;정병진;박기태;최정훈;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.126-128
    • /
    • 2007
  • This paper proposes maximum torque control of IPMSM drive using Adaptive Fuzzy-Neuro controller and artificial neural network(ANN). The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. This paper proposes the analysis results to verify the effectiveness of the Adaptive Fuzzy-Neuro and ANN controller.

  • PDF

뉴로-퍼지 제어기를 이용한 원형 역진자 시스템의 제어 (The Control of the Rotary Inverted Pendulum System using Neuro-Fuzzy Controller)

  • 이주원;채명기;이상배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.45-49
    • /
    • 1997
  • In this paper, we controlled a Rotary Inverted Pendulum System using Neuro-Fuzzy Controller(NFC). The inverted pendulum system is widely used as a typical example of an unstable nonlinear control system which is difficult to control. Fuzzy theory have been because membership functions and rules of a fuzzy controller are often given by experts or a fuzzy logic control system. This controller is a feedforward multilayered network which integrates the basic elements and functions of a tradtional fuzzy logic controller into a connectionist structure which has distributed learning abilities. Such NFC can be constructed from training examples by learning rule, and the structure can be trained to develop fuzzy logic rules and find optimal input/output membership functions. Using this controller, we presented the results that controlled a Rotary Inverted Pendulum System and the associated algorithms.

  • PDF

가변부하를 갖는 직류 서보 전동기의 속도제어를 위한 뉴로-퍼지 제어기 설계 (Design of Neuro-Fuzzy Controller for Velocity Control of DC Servo Motor with Variable Loads)

  • 김상훈;강영호;남문현;김낙교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.513-515
    • /
    • 1999
  • In this paper, Neuro-Fuzzy controller which has the characteristic of Fuzzy control and artificial Neural Network is designed A fuzzy rule to be applied is selected automatically by the allocated neurons. The neurons correspond to Fuzzy rules which are created by the expert. In order to adaptivity, the more precise modeling is implemented by error back propagation learning of adjusting the link-weight of fuzzy membership function in Neuro-fuzzy controller. The more classified fuzzy rule is used to include the property of Dual mode Method. To test the effectiveness of the algorithm designed above the experiment for DC servo motor with variable load as variable load plant is implementation.

  • PDF

뉴로-퍼지 제어기를 이용한 교류 서보 전동기의 속도제어 (Speed control of AC Servo Motor with Neuro-Fuzzy Controller)

  • 김종현;김상훈;고봉운;김낙교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2018-2020
    • /
    • 2001
  • In this study, a Neuro-Fuzzy Controller which has the characteristic of Fuzzy control and Artificial Neural Network is designed. A fuzzy rule to be applied is automatically selected by the allocated neurons. The neurons correspond to Fuzzy rules are created by an expert. To adapt the more precise modeling is implemented by error back propagation learning of adjusting the link-weight of fuzzy membership function in the Neuro-Fuzzy controller. The more classified fuzzy rule is used to include the property of dual mode method. In order to verify the effectiveness of an algorithm designed above, an operating characteristic of a AC servo motor is investigated.

  • PDF

헬리콥터 자세제어를 위한 뉴로 퍼지 제어기의 설계에 관한 연구 (A Study on Design of Neuro- Fuzzy Controller for Attitude Control of Helicopter)

  • 최용선;임태우;장경원;안태천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2283-2285
    • /
    • 2001
  • This paper proposed to a neural network based fuzzy control (neuro-fuzzy control) technique for attitude control of helicopter with strongly dynamic nonlinearities and derived a helicopter aerodynamic torque equation of helicopter and the force balance equation. A neuro-fuzzy system is a feedforward network that employs a back-propagation algorithm for learning purpose. A neuro-fuzzy system is used to identify nonlinear dynamic systems. Hence, this paper presents methods for the design of a neural network(NN) based fuzzy controller(that is, neuro-fuzzy control) for a helicopter of nonlinear MIMO systems. The proposed neuro-fuzzy control determined to a input-output membership function in fuzzy control and neural networks constructed to improve through learning of input-output membership functions determined in fuzzy control.

  • PDF

비선형 시스템의 안정화를 위한 자기순환 뉴로-퍼지 제어기의 설계 (Design of Self Recurrent Neuro-Fuzzy Controller for Stabilization of Nonlinear System)

  • 탁한호;이인용;이성현
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.390-393
    • /
    • 2007
  • In this paper, applications of self recurrent neuro-fuzzy controller to stabilization of nonlinear system are considered. The architecture of self recurrent neuro-fuzzy controller is fix layer, and the hidden layer is comprised of self recurrent architecture. Also, generalized dynamic error-backpropagation algorithm is used for the learning of the self recurrent neuro-fuzzy controller. To demonstrate the efficiency of the self recurrent neuro-fuzzy control algorithm presented in this study, a self recurrent neuro-fuzzy controller was designed and then a comparative analysis was made with LQR controller through an simulation.

  • PDF

뉴로-퍼지 제어기를 이용한 전력시스템의 발전량 증가율 제한에 관한 연구 (A study on Generation rate Constraints of Power System using Neuro-Fuzzy Controller)

  • 김상효;이창우;주석민;정동일;정형환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.301-303
    • /
    • 2002
  • The load frequency control of power system is one of important subjects in view of system operation and control. To converge within allowance load variation value the frequency and tie-line power flow deviation of each areas, we should regulate the active power output of power plant for regulation in system Applying the NFC(Neuro-Fuzzy Controller) to the model of load frequency control of 2-area power system, we prove that the control is superior to the conventional control technique through computer simulation. For verification of robustness, when we consider generator-rate constraint similar to nonlinearities of power system.

  • PDF

뉴로-퍼지 제어기 설계 연구 (A Study on a Neuro-Fuzzy Controller Design)

  • 임정홈;정태진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2120-2122
    • /
    • 2002
  • There are several types of control systems that use fuzzy logic controller as a essential system component. The majority of research work on fuzzy PID controller focuses on the conventional two-input PI or PD type controller. However, fuzzy PID controller design is a complex task due to the involvement of a large number of parameters in defining the fuzzy rule base. In this paper we combined conventional PI type and PD type fuzzy controller and set the initial parameters of this controller from the conventional PID controller gains obtained by Ziegler-Nichols tuning or other coarse tuning methods. After that, by replacing some of these parameters with sing1e neurons and making them to be adjusted by back-propagation learning algorithm we designed a neuro-fuzzy controller which showed good performance characteristics in both computer simulation and actual application.

  • PDF

기준 모델 추종 기능을 이용한 뉴로-퍼지 적응 제어기 설계 (A design of neuro-fuzzy adaptive controller using a reference model following function)

  • 이영석;유동완;서보혁
    • 제어로봇시스템학회논문지
    • /
    • 제4권2호
    • /
    • pp.203-208
    • /
    • 1998
  • This paper presents an adaptive fuzzy controller using an neural network and adaptation algorithm. Reference-model following neuro-fuzzy controller(RMFNFC) is invesgated in order to overcome the difficulty of rule selecting and defects of the membership function in the general fuzzy logic controller(FLC). RMFNFC is developed to tune various parameter of the fuzzy controller which is used for the discrete nonlinear system control. RMFNFC is trained with the identification information and control closed loop error. A closed loop error is used for design criteria of a fuzzy controller which characterizes and quantize the control performance required in the overall control system. A control system is trained up the controller with the variation of the system obtained from the identifier and closed loop error. Numerical examples are presented to control of the discrete nonlinear system. Simulation results show the effectiveness of the proposed controller.

  • PDF