• Title/Summary/Keyword: 뉴럴네트워크모델

Search Result 128, Processing Time 0.022 seconds

An Emerging Technology Trend Identifier Based on the Citation and the Change of Academic and Industrial Popularity (학계와 산업계의 정보 대중성 변동과 인용 정보에 기반한 최신 기술 동향 식별 시스템)

  • Kim, Seonho;Lee, Junkyu;Rasheed, Waqas;Yeo, Woondong
    • Journal of Korea Technology Innovation Society
    • /
    • v.14 no.spc
    • /
    • pp.1171-1186
    • /
    • 2011
  • Identifying Emerging Technology Trends is crucial for decision makers of nations and organizations in order to use limited resources, such as time, money, etc., efficiently. Many researchers have proposed emerging trend detection systems based on a popularity analysis of the document, but this still needs to be improved. In this paper, an emerging trend detection classifier is proposed which uses both academic and industrial data, SCOPUS and PATSTAT. Unlike most pre-vious research, our emerging technology trend classifi-er utilizes supervised, semi-automatic, machine learning techniques to improve the precision of the results. In addition, the citation information from among the SCOPUS data is analyzed to identify the early signals of emerging technology trends.

  • PDF

Classification Model of Facial Acne Using Deep Learning (딥 러닝을 이용한 안면 여드름 분류 모델)

  • Jung, Cheeoh;Yeo, Ilyeon;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.381-387
    • /
    • 2019
  • The limitations of applying a variety of artificial intelligence to the medical community are, first, subjective views, extensive interpreters and physical fatigue in interpreting the image of an interpreter's illness. And there are questions about how long it takes to collect annotated data sets for each illness and whether to get sufficient training data without compromising the performance of the developed deep learning algorithm. In this paper, when collecting basic images based on acne data sets, the selection criteria and collection procedures are described, and a model is proposed to classify data into small loss rates (5.46%) and high accuracy (96.26%) in the sequential structure. The performance of the proposed model is compared and verified through a comparative experiment with the model provided by Keras. Similar phenomena are expected to be applied to the field of medical and skin care by applying them to the acne classification model proposed in this paper in the future.

Implementation of Encoder/Decoder to Support SNN Model in an IoT Integrated Development Environment based on Neuromorphic Architecture (뉴로모픽 구조 기반 IoT 통합 개발환경에서 SNN 모델을 지원하기 위한 인코더/디코더 구현)

  • Kim, Hoinam;Yun, Young-Sun
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.47-57
    • /
    • 2021
  • Neuromorphic technology is proposed to complement the shortcomings of existing artificial intelligence technology by mimicking the human brain structure and computational process with hardware. NA-IDE has also been proposed for developing neuromorphic hardware-based IoT applications. To implement an SNN model in NA-IDE, commonly used input data must be transformed for use in the SNN model. In this paper, we implemented a neural coding method encoder component that converts image data into a spike train signal and uses it as an SNN input. The decoder component is implemented to convert the output back to image data when the SNN model generates a spike train signal. If the decoder component uses the same parameters as the encoding process, it can generate static data similar to the original data. It can be used in fields such as image-to-image and speech-to-speech to transform and regenerate input data using the proposed encoder and decoder.

QoS-Aware Optimal SNN Model Parameter Generation Method in Neuromorphic Environment (뉴로모픽 환경에서 QoS를 고려한 최적의 SNN 모델 파라미터 생성 기법)

  • Seoyeon Kim;Bongjae Kim;Jinman Jung
    • Smart Media Journal
    • /
    • v.12 no.4
    • /
    • pp.19-26
    • /
    • 2023
  • IoT edge services utilizing neuromorphic hardware architectures are suitable for autonomous IoT applications as they perform intelligent processing on the device itself. However, spiking neural networks applied to neuromorphic hardware are difficult for IoT developers to comprehend due to their complex structures and various hyper-parameters. In this paper, we propose a method for generating spiking neural network (SNN) models that satisfy user performance requirements while considering the constraints of neuromorphic hardware. Our proposed method utilizes previously trained models from pre-processed data to find optimal SNN model parameters from profiling data. Comparing our method to a naive search method, both methods satisfy user requirements, but our proposed method shows better performance in terms of runtime. Additionally, even if the constraints of new hardware are not clearly known, the proposed method can provide high scalability by utilizing the profiled data of the hardware.

Comparison of Audio Event Detection Performance using DNN (DNN을 이용한 오디오 이벤트 검출 성능 비교)

  • Chung, Suk-Hwan;Chung, Yong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.571-578
    • /
    • 2018
  • Recently, deep learning techniques have shown superior performance in various kinds of pattern recognition. However, there have been some arguments whether the DNN performs better than the conventional machine learning techniques when classification experiments are done using a small amount of training data. In this study, we compared the performance of the conventional GMM and SVM with DNN, a kind of deep learning techniques, in audio event detection. When tested on the same data, DNN has shown superior overall performance but SVM was better than DNN in segment-based F-score.

Genetic Algorithms based Optimal Polynomial Neural Network Model (유전자 알고리즘 기반 최적 다항식 뉴럴네트워크 모델)

  • Kim, Wan-Su;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2876-2878
    • /
    • 2005
  • In this paper, we propose Genetic Algorithms(GAs)-based Optimal Polynomial Neural Networks(PNN). The proposed algorithm is based on Group Method of Data Handling(GMDH) method and its structure is similar to feedforward Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and can be generated. The each node of PNN structure uses several types of high-order polynomial such as linear, quadratic and modified quadratic, and is connected as various kinds of multi-variable inputs. The conventional PNN depends on experience of a designer that select No. of input variable, input variable and polynomial type. Therefore it is very difficult a organizing of optimized network. The proposed algorithm identified and selected No. of input variable, input variable and polynomial type by using Genetic Algorithms(GAs). In the sequel the proposed model shows not only superior results to the existing models, but also pliability in organizing of optimal network. The study is illustrated with the ACI Distance Relay Data for application to power systems.

  • PDF

LiDAR Image Segmentation using Convolutional Neural Network Model with Refinement Modules (정제 모듈을 포함한 컨볼루셔널 뉴럴 네트워크 모델을 이용한 라이다 영상의 분할)

  • Park, Byungjae;Seo, Beom-Su;Lee, Sejin
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • This paper proposes a convolutional neural network model for distinguishing areas occupied by obstacles from a LiDAR image converted from a 3D point cloud. The channels of a LiDAR image used as input consist of the distances to 3D points, the reflectivities of 3D points, and the heights of 3D points from the ground. The proposed model uses a LiDAR image as an input and outputs a result of a segmented LiDAR image. The proposed model adopts refinement modules with skip connections to segment a LiDAR image. The refinement modules with skip connections in the proposed model make it possible to construct a complex structure with a small number of parameters than a convolutional neural network model with a linear structure. Using the proposed model, it is possible to distinguish areas in a LiDAR image occupied by obstacles such as vehicles, pedestrians, and bicyclists. The proposed model can be applied to recognize surrounding obstacles and to search for safe paths.

Precise WLAN Access Point Localization Method Using Neural Network (신경망을 사용한 정밀 무선랜 접속점 측위 방법)

  • Seok, Ki-Jung;Chun, Seung-Man;Nah, Jae-Wook;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.52-60
    • /
    • 2010
  • Knowledge of the physical locations of access point of WLAN is becoming increasingly important with the rise of location-based services. In this article, we propose a new AP localization method using neural network approach. Basic theory and properties are derived for precise outdoor AP localization using GPS location information and RSSI. Rules for neural network model are derived and simulation has finally been done to demonstrate the efficiency of the proposed method. The simulation results show that the proposed method can result in AP localization with very. low error probability.

A Survey on Neural Networks Using Memory Component (메모리 요소를 활용한 신경망 연구 동향)

  • Lee, Jihwan;Park, Jinuk;Kim, Jaehyung;Kim, Jaein;Roh, Hongchan;Park, Sanghyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.8
    • /
    • pp.307-324
    • /
    • 2018
  • Recently, recurrent neural networks have been attracting attention in solving prediction problem of sequential data through structure considering time dependency. However, as the time step of sequential data increases, the problem of the gradient vanishing is occurred. Long short-term memory models have been proposed to solve this problem, but there is a limit to storing a lot of data and preserving it for a long time. Therefore, research on memory-augmented neural network (MANN), which is a learning model using recurrent neural networks and memory elements, has been actively conducted. In this paper, we describe the structure and characteristics of MANN models that emerged as a hot topic in deep learning field and present the latest techniques and future research that utilize MANN.

Impulsive Noise Mitigation Scheme Based on Deep Learning (딥 러닝 기반의 임펄스 잡음 완화 기법)

  • Sun, Young Ghyu;Hwang, Yu Min;Sim, Issac;Kim, Jin Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.138-149
    • /
    • 2018
  • In this paper, we propose a system model which effectively mitigates impulsive noise that degrades the performance of power line communication. Recently, deep learning have shown effective performance improvement in various fields. In order to mitigate effective impulsive noise, we applied a convolution neural network which is one of deep learning algorithm to conventional system. Also, we used a successive interference cancellation scheme to mitigate impulsive noise generated from multi-users. We simulate the proposed model which can be applied to the power line communication in the Section V. The performance of the proposed system model is verified through bit error probability versus SNR graph. In addition, we compare ZF and MMSE successive interference cancellation scheme, successive interference cancellation with optimal ordering, and successive interference cancellation without optimal ordering. Then we confirm which schemes have better performance.