In the field of biometric security such as face and iris recognition, it is essential to extract facial features such as eyes and lips. In this paper, we have studied a method of detecting eye and lip region in face image using faster R-CNN. The faster R-CNN is an object detection method using deep running and is well known to have superior performance compared to the conventional feature-based method. In this paper, feature maps are extracted by applying convolution, linear rectification process, and max pooling process to facial images in order. The RPN(region proposal network) is learned using the feature map to detect the region proposal. Then, eye and lip detector are learned by using the region proposal and feature map. In order to examine the performance of the proposed method, we experimented with 800 face images of Korean men and women. We used 480 images for the learning phase and 320 images for the test one. Computer simulation showed that the average precision of eye and lip region detection for 50 epoch cases is 97.7% and 91.0%, respectively.
Journal of the Korea Society of Computer and Information
/
v.14
no.4
/
pp.39-46
/
2009
Many lip region detection methods have been developed in PC environment. But the existing methods are difficult to run on real-time in resource limited mobile devices. To solve the problem, this paper proposes a real-time lip region detection method for lipreading in Mobile device. It detects face region by using adaptive face color information. After that, it detects lip region by using geometrical relation between eyes and lips. The proposed method is implemented in a smart phone with Intel PXA 270 embedded processor and 386MB memory. Experimental results show that the proposed method runs at the speed 9.5 frame/see and the correct detection rate was 98.8% for 574 images.
임의 영상에서 얼굴 영역을 검출하고 얼굴 특징점 정보를 획득하는 기술은 얼굴 인식 및 표정 인식 시스템에서 중요한 역할을 한다. 본 논문은 색도 정보와 Top-hat 연산을 이용함으로써 얼굴의 유효 특징점을 효과적으로 검출할 수 있는 방법을 제안한다. 제안한 방법은 얼굴 영역 검출, 눈/눈썹 특징추출, 입술 특징추출의 세 과정으로 나눈다. 얼굴 영역은 $YC_{b}C_{r}$을 이용하여 피부색 영역을 추출한 후 모폴로지 연산과 분할을 통해 획득하고, 눈/눈썹 특징점은 BWCD(Black & White Color Distribution) 변환과 Top-hat 연산을 이용하며. 입술 특징점은 눈/눈썹과의 지정학적 상관관계와 입술 색상분포를 이용하는 방법을 사용한다. 실험을 수행한 결과. 제안한 방법이 다양한 영상에 대해서도 효과적으로 얼굴의 유효 특징점을 검출할 수 있음을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.262-264
/
2003
얼굴영상을 효율적으로 처리하기 위해선 먼저 입력영상에서 얼굴영역과 얼굴을 구성하는 각 기관을 검출하는 전처리과정이 필요하다. 본 논문에서는 얼굴의 크기와 얼굴의 회전, 조영의 변화가 어느 정도 허용되고 피부색 배경이 얼굴에 병합된 경우에도 얼굴영역과 얼굴기관(눈, 입)을 강건하게 검출할 수 있는 방법으로, 입력영상에 따른 적응적 칼라 색상정보와 얼굴기관의 부분 템플릿매칭을 조합한 알고리즘을 제안한다. 변환된 HSV 칼라 좌표계상의 대역적 피부색상 정보와 히스토그램을 이용한 적응적 피부색상 정보로 얼굴영역을 검출한 뒤, 얼굴영역 안에서 입술색상 정보로 도출된 입술영역의 X축 기울기를 이용해 회전얼굴을 보정하고, 양안의 조합으로 이루어진 부분 템플릿을 이용해 눈을 검출한다.
For an effective pre-treatment process of a face input image, it is necessary to detect each of face components, calculate the face area, and estimate the rotary angle of the face. A proposed method of this study can estimate an robust result under such renditions as some different levels of illumination, variable fate sizes, fate rotation angels, and background color similar to skin color of the face. The first step of the proposed method detects the estimated face area that can be calculated by both adapted skin color Information of the band-wide HSV color coordinate converted from RGB coordinate, and skin color Information using histogram. Using the results of the former processes, we can detect a lip area within an estimated face area. After estimating a rotary angle slope of the lip area along the X axis, the method determines the face shape based on face information. After detecting eyes in face area by matching a partial template which is made with both eyes, we can estimate Y axis rotary angle by calculating the eye´s locations in three dimensional space in the reference of the face area. As a result of the experiment on various face images, the effectuality of proposed algorithm was verified.
본 논문은 유튜브에 업로드 된 운동 영상을 시청하는 사람의 얼굴 영역을 YoloV3을 이용하여 얼굴 영상에서 눈 및 입술영역을 검출하는 방법을 연구하여, YoloV3은 딥 러닝을 이용한 물체 검출 방법으로 기존의 특징 기반 방법에 비해 성능이 우수한 것으로 알려져 있다. 본 논문에서는 영상을 다차원적으로 분리하고 클래스 확률(Class Probability)을 적용하여 하나의 회귀 문제로 접근한다. 영상의 1 frame을 입력 이미지로 CNN을 통해 텐서(Tensor)의 그리드로 나누고, 각 구간에 따라 객체인 경계 박스와 클래스 확률을 생성해 해당 구역의 눈과 입을 검출한다. 검출된 이미지 감성 분석을 통해, 운동 영상 중 하이라이트 부분을 자동으로 선별하는 시스템을 설계하였다.
Proceedings of the Korean Information Science Society Conference
/
2006.06b
/
pp.313-315
/
2006
본 연구에서는 실내에서 입력받은 영상의 조명과 크기 변화 등에 강인한 얼굴 검출 기법을 소개한다. 제안된 얼굴 검출 기법은 후보 영역 선정 과정과 얼굴패턴 검출 과정, 얼굴 영역 보정 과정으로 이루어진다. 후보 영역 선정 과정에서는 조명보정과 색상 필터, 움직임 필터를 이용하여 얼굴패턴의 후보 영역을 선정한다. 얼굴패턴 검출 과정에서는 CNN을 이용하여 특징을 추출하고, WFMM 신경망을 이용하여 얼굴 패턴을 검증한다. 얼굴 영역 보정 과정은 형태학적 연산 등의 영상 처리를 이용하여 눈 영역과 입술 영역의 위치를 판별한 후 최종적인 얼굴 영역을 결정한다.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.1
/
pp.110-115
/
2005
This paper proposes the method to detect contours of a face, eyes and a mouth in a color image for making an avatar automatically. First, we use the HSI color model to exclude the effect of various light condition, and we find skin regions in an input image by using the skin color is defined on HS-plane. And then, we use deformable templates and Genetic Algorithm(GA) to detect contours of a face, eyes and a mouth. Deformable templates consist of B-spline curves and control point vectors. Those can represent various shape of a face, eyes and a mouth. And GA is very useful search procedure based on the mechanics of natural selection and natural genetics. Second, an avatar is created automatically by using contours and Fuzzy C-means clustering(FCM). FCM is used to reduce the number of face color As a result, we could create avatars like handmade caricatures which can represent the user's identity, differing from ones generated by the existing methods.
Journal of the Korea Institute of Information and Communication Engineering
/
v.14
no.8
/
pp.1827-1835
/
2010
In this paper, facial feature areas in user picture are created by facial feature points extracted by ASM(Active Shape Model). In a existing virtual make-up application, users manually select a few features that are exactly. Users are uncomfortable with this method. We propose a virtual makeup application using ASM that does not require user input. In order to express a natural makeup, the modified alpha blendings for each cosmetic are used to blend skin color with cosmetic color. The Virtual makeup application was implemented to apply Foundation, Blush, Lip Stick, Lip Liner, Eye Pencil, Eye Liner and Eye Shadow.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.