• Title/Summary/Keyword: 눈안정동위원소

Search Result 4, Processing Time 0.016 seconds

Comparison between Total Least Squares and Ordinary Least Squares for Linear Relationship of Stable Water Isotopes (완전최소자승법과 보통최소자승법을 이용한 물안정동위원소의 선형관계식 비교)

  • Lee, Jeonghoon;Choi, Hye-Bin;Lee, Won Sang;Lee, Seung-Gu
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.517-523
    • /
    • 2017
  • A linear relationship between two stable water isotopes, oxygen and hydrogen, has been used to understand the water cycle as a basic tool. A slope and intercept from the linear relationship indicates what kind of physical processes occur during movement of water. Traditionally, ordinary least squares (OLS) method has been utilized for the linear relationship, but total least squares (TLS) method provides more accurate slope and intercept theoretically because isotopic compositions of both oxygen and hydrogen have uncertainties. In this work, OLS and TLS were compared with isotopic compositions of snow and snowmelt collected from the King Sejong Station, Antarctica and isotopic compositions of water vapor observed by Lee et al. (2013) in the western part of Korea. The slopes from the linear relationship of isotopic compositions of snow and snowmelt at the King Sejong Station were estimated to be 7.00 (OLS) and 7.16(TLS) and the slopes of stable water vapor isotopes were 7.75(OLS) and 7.87(TLS). There was a melting process in the snow near the King Sejong Station and the water vapor was directly transported from the ocean to the study area based on the slope calculations. There is no significant difference in two slopes to interpret the physical processes. However, it is necessary to evaluate the slope differences from the two methods for studies for example, groundwater recharge processes, using the absolute slope values.

Rayleigh Fractionation of Stable Water Isotopes during Equilibrium Freezing (평형 냉동에 의한 물동위원소의 레일리분별)

  • Lee, Jeonghoon;Jung, Hyejung;Nyamgerel, Yalalt
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.61-67
    • /
    • 2021
  • Isotopic compositions of snow or ice have been used to reconstruct paleoclimate and to calculate contribution to streamwater using isotopic hydrograph separation as an end member. During freezing and melting of snow or ice, isotopic fractionation occurs between snow or ice and liquid water. Isotopic evolution during melting process has been studied by field, melting experiments and modeling works, but that during freezing has not been well studied. In this review, isotopic fractionation during equilibrium freezing is discussed using the linear relationship between two stable water isotopes (oxygen and hydrogen) and the Rayleigh fractionation. Snow, evaporated from nearby ocean and condensated, follows the Global Meteoric Water Line (slope of 8), but the melting and freezing of snow affect the linear relationship (slope of 19.5/3.1~6.3). The isotopic evolution of liquid water by freezing observed in the open system during Rayleigh fractionation is also seen in the closed system. The isotopic evolution of snow or ice in the open system where the snow or ice is continuously removed becomes more enriched than the residual liquid water by the fractionation factor. The isotopic evolution of snow or ice in the closed system eventually equals the original isotopic compositions of liquid water. It is expected the understanding of isotopic evolution of snow or ice by freezing to increase the accuracy of the paleoclimate studies and hydrograph separation.

Geological Achievements of the 20th Century and Their Influence on Geological Thinking (20세기에 이룩된 지질과학 업적과 이것이 지질과학 사고방식에 끼친 영향)

  • Chang, Soon-Keun;Lee, Sang-Mook
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.635-646
    • /
    • 2000
  • Geological achievements of the 20th century revolutionized our views about geological understanding and concept. A good example is the concept of continental drift suggested early in the 20th century and later explained in terms of seafloor spreading and plate tectonics. Our understanding of the compositions of materials forming earth has also improved during the20th century. Radio and stable isotopes together with biostratigraphy and sequence stratigraphy allow us to interpret the evolution of sedimentary basins in terms of plate movement and sedimentation processes. The Deep Sea Drilling Project initiated in 1960s and continued as the Ocean Drilling Project in 1980s is one of the most successful international research observations, and new developments in computational techniques have provided a wholly new view about the interior of the earth. Most of the geological features and phenomena observed in deep sea and around continental margins are now explained in terms of global tectonic processes such as superplumes flowing up from the interior of our planet and interacting with such as Rodinia Pannotia and Nena back in the Precambrian time. The space explorations which began in the late 1950s opened up a new path to astrogeology, astrobiology, and astropaleontology. The impact theory rooted in the discovery of iridium and associated phenomena in 1980s revived Cuvier's catastrophism as a possible explanation for the extinctions of biotas found in the geological record of this planet. Due to the geological achievements made in the 20th century, we now have a better understanding of geologic times and processes that were too long to be grasped by human records.

  • PDF

A Study of Stable Isotopic Variations of Antarctic Snow by Albedo Differences (알베도 변화에 의한 남극 눈 안정동위원소의 변동에 관한 연구)

  • Lee, Jeonghoon;Han, Yeongcheol;Ham, Ji-Young;Na, Un-Sung
    • Ocean and Polar Research
    • /
    • v.37 no.2
    • /
    • pp.141-147
    • /
    • 2015
  • Snow albedo can be decreased if there are any impurities on the snow surface other than the snow itself. Due to the decrease of snow albedo, melting rates of surface snow can increase, which is very crucial in climate change and hydrogeology in many parts of the world. Anthropogenic black carbons caused by the incomplete combustion of fossil fuel affect snow and tephra particles generated by geologic volcanic activities reduce snow albedo. In this study, we investigated isotopic compositions for snow covered by tephra particles and compared with this with clean snow. Isotopic compositions of snow with tephra statistically show more enriched than those of clean snow (p<0.02). This can be explained by the fact that snow becomes enriched in $^{18}O$ or D relative to meltwater as melting rates are increased. In addition, the slopes of the linear regression between oxygen and hydrogen for snow with tephra and clean snow are 6.7 and 8, respectively, and the latter is similar to that of the global meteoric water line of 8. Therefore, we can conclude that snow impurities control the isotopic compositions of snow, which is very crucial in the study of climate change and hydrogeology. To quantitatively explain these observations, melting experiments and numerical approaches are required.