• Title/Summary/Keyword: 높은 Re수

Search Result 3, Processing Time 0.016 seconds

Numerical Simulation of 2-D Lid-Driven Cavity Plow at High Reynolds numbers (높은 Re수에서의 2차원 Lid-Driven 캐비티유동의 수치해석)

  • Myong H. K.;Kim J. E.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.153-158
    • /
    • 2005
  • Numerical simulations of two-dimensional steady incompressible lid-driven flow in a square cavity are presented to verify the validity of a new solution code(PowerCFD) with unstructured grids. The code uses the non-staggered(collocated) grid approach which is very popular for incompressible flow analysis because of its numerical efficiency on the curvilinear or unstructured grids. Solutions are obtained for configurations with a Reynolds number as high as 10,000 with both rectangular and hybrid types of unstructured grid mesh. Interesting features of the flow are presented in detail and comparisons are made with benchmark solutions found in the literature. It is found that the code is capable of producing accurately the nature of the lid-driven cavity flow at high Reynolds numbers.

  • PDF

Fuel Droplet Entrainment and Low Frequency Instability in Hybrid Rocket Combustion (하이브리드 로켓 연소에서 연료액적의 발생과 저주파수 연소불안정)

  • Kim, Jina;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.573-580
    • /
    • 2021
  • Paraffin wax is attracting many attentions for promising solid fuel of hybrid rocket because of its higher regression than other fuels. However, even with paraffin fuel combustion, unsteady low-frequency oscillation of combustion pressure is still observed. And, this is related to the formation of liquid layer and the entrainment of fuel droplets entering the axial combustion gas flow. This study investigates the effect of additional combustion of fuel droplets on the occurrence of low-frequency combustion instability. On the other hand, the formation of fuel droplets depends on Weber Number (the ratio of the inertial force to the surface tension of the liquid) and Reynolds Number of the oxidizer flow. Therefore, a laboratory-scale hybrid rocket was used to monitor the occurrence of combustion instability while changing We number. A series of combustion tests were conducted to control We number by changing the oxidizer flow rate or adding LDPE (low density polyethylene) to base fuel. In the results, it was confirmed that there is a critical We number above which the low-frequency combustion instability occurs.

Technique of Heat Transfer Augmentation in Impinging Air Jet System (충돌공기(衝突空氣) 분류계(噴流系)에서의 전열촉진기술(傳熱促進技術)에 관(關)한 연구(硏究))

  • Choi, Doo-Seob;Kum, Seong-Min;Lee, Yong-Hwa;Seo, Jeong-Yun
    • Solar Energy
    • /
    • v.13 no.1
    • /
    • pp.11-21
    • /
    • 1993
  • The purpose of this study was to investigate the enhancement of heat transfer without additional external power in the case of rectangular impingement air jet vertically on the flat heating surface. The technique used in the present study was placement of square rod bundles as a turbulence promoter in front of the heat transfer surface. The results obtained through this study were summerized as follws. High heat transfer enhancement was achieved by inserting rods in front of the heating flat plate. According to visulaization, it was examined because of flow acceleration and separation and disturbance of boundary layer. The smaller clerance between rod and heating plate was, the larger heat transfer effect became at each H/B. Arverage Nusselt number reached maximum at H/B=10 and the local augmentation rate of heat transfer became maximum at H/B=2. The maximum average heat transfer enhancement rate increase about 43% for the case of X/B=2 and C=1mm, compared to a flat plate without rods. The correlating equation of average Nusselt number and Reynolds number was obatined. As follws : ${\overline{Nu}}_0=1.249Re^{0.465}(C/A)^{-0.033}(H/B)^{0.013}$.

  • PDF