• Title/Summary/Keyword: 농화배양

Search Result 48, Processing Time 0.02 seconds

Biological Dechlorination of Chlorinated Ethylenes by Using Bioelectrochemical System (생물전기화학시스템을 이용한 염화에틸렌의 생물학적 탈염소화)

  • Yu, Jaecheul;Park, Younghyun;Seon, Jiyun;Hong, Seongsuk;Cho, Sunja;Lee, Taeho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.304-311
    • /
    • 2012
  • Chlorinated ethylenes such as perchloroethylene (PCE) and trichloroethylene (TCE) are widely used as industrial solvents and degreasing agents. Because of improper handling, these highly toxic chlorinated ethylenes have been often detected from contaminated soils and groundwater. Biological PCE dechlorination activities were tested in bacterial cultures inoculated with 10 different environmental samples from sediments, sludges, soils, and groundwater. Of these, the sediment using culture (SE 2) was selected and used for establishing an efficient PCE dechlorinating enrichment culture since it showed the highest activity of dechlorination. The cathode chamber of bioelectrochemical system (BES) was inoculated with the enrichment culture and the system with a cathode polarized at -500 mV (Vs Ag/AgCl) was operated under fed-batch mode. PCE was dechlorinated to ethylene via TCE, cis-dichloroethylene, and vinyl chloride. Microbial community analysis with polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) showed that the microbial community in the enrichment culture was significantly changed during the bio-electrochemical PCE dechlorination in the BES. The communities of suspended-growth bacteria and attached-growth bacteria on the cathode surface are also quite different from each other, indicating that there were some differences in their mechanisms receiving electrons from electrode for PCE dechlorination. Further detailed research to investigate electron transfer mechanism would make the bioelctrochemical dechlorination technique greatly useful for bioremediation of soil and groundwater contaminated with chlorinated ethylenes.

Biosynthesis of polyhydroxyalkanoate by mixed microbial cultures from hydrolysate of waste activated sludge (혼합미생물배양체를 이용한 폐활성슬러지 가용화 산물로부터 polyhydroxyalkanoate 생합성)

  • Park, Taejun;Yoo, Young Jae;Jung, Dong Hoon;Lee, Sun Hee;Rhee, Young Ha
    • Korean Journal of Microbiology
    • /
    • v.53 no.3
    • /
    • pp.200-207
    • /
    • 2017
  • A new approach to the solubilization of waste activated sludge (WAS) using alginate-quaternary ammonium complex beads was investigated under controlled mild alkaline conditions. The complex beads were prepared by the reaction of sodium alginate (SA) with 3-(trimethoxysilyl)propyl-octadecyldimethylammonium chloride (TSA) in acid solution, followed by crosslinking with $CaCl_2$. Treatment of WAS with SA-TSA complex beads was effective for enhancing the efficacy of WAS solubilization. The highest value of soluble chemical oxygen demand (SCOD) concentration (3,900 mg/L) was achieved after 10 days of treatment with 30% (v/v) SA-TSA complex beads. The WAS solubilization efficacy of the complex beads was also evaluated by estimating the concentrations of volatile fatty acids (VFAs). The maximum value of VFAs was 2,961 mg/L, and the overall proportions of VFAs were more than 75% of SCOD. The main components of VFAs were acetic, propionic, iso-butyric, and butyric acids. These results suggest that SA-TSA complex beads might be useful for enhancing the solubilization of WAS. The potential use of VFAs as the external carbon substrate for the production of polyhydroxyalkanoate (PHA) by a mixed microbial culture (MMC) was also examined. The enrichment of PHA-accumulating MMC could be achieved by periodic feeding of VFAs generated from WAS in a sequencing batch reactor. The composition of PHA synthesized from VFAs mainly consisted of 3-hydroxybutyrate. The maximum PHA content accounted for 25.9% of dry cell weight. PHA production by this process is considered to be promising since it has a doubly beneficial effect on the environment by reducing the amount of WAS and concomitantly producing an eco-friendly biopolymer.

미생물을 이용한 다용도 고형 탈취제의 개발

  • Kim, Yu-Jin;Lee, Eun-Jeong;Jeon, Mi-Uk;Kim, Cho-Hui;Park, Seong-Hun;Lee, Eun-Yeol
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.513-516
    • /
    • 2001
  • This study was to develop of efficient microbial agent for malodor removal. Total ten strains of beneficial bacteria Bacillus sp., Pseudomonas sp., and photosynthetic bacteria were isolated and identified on the basis of their morphological and biochemical characteristics. The enzyme activities such as amylase, protease, lipase and cellulase of bacteria cells were measured. Furthennore, effective formulation procedure 、 ,vas developed with nutrient additive, stabilizing agent and mineral materix. For preparation of microbial agent, developing of formulation technique was very helpful for incresing the cell survival rate.

  • PDF

Biodeodorization of Trimethylamine by Earthworm Cast Bioflter (분변토 Biofilter를 이용한 Trimethylamine의 제거)

  • Kim, Song-Gun;Lee, Sung-Taik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.2
    • /
    • pp.71-75
    • /
    • 1996
  • A bacterium, capable of the degradation of trimethylamine(TMA), dimethylamine, and methylamine, was isolated from an enrichment culture on TMA basal mineral medium. The isolate was identified as Methylobacterium some carbon-carbon bonds compounds like malate, succinate, betaine. When the strain was immobilized to earthworm cast, the biofilter could remove the gaseous TMA of SV $30h^{-1}$, concentration of 120ppm, continuously.

  • PDF

유류오염 토양의 화학.생물학적 통합처리 과정 중의 미생물 군집 변화

  • Choi Jeong-Hye;Bae Jae-Sang;Park Yeon-Jeong;Kim Su-Gon;Go Seong-Cheol
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.29-32
    • /
    • 2006
  • 화학적 산화처리와 bioremedation 기법을 개별적 또는 복합적으로 동시에 적용함으로써 한 개별 기법의 단점을 보완하고 현장적용성을 증대시킬 수 있는 통합기법을 개발하고자 하였다. 펜톤유사 반응을 통해 고농도의 유류를 산화분해 시킨 후 미생물 처리를 통해 잔류 유류 오염물질을 제거하고자 하였다. 유류 오염토양의 화학 생물학적 통합처리 공정의 현장 적용성 및 토양 미생물에 미치는 영향을 검증하기 위해 처리과정 전 후의 미생물 군집구조를 분석하였다. 또한 토양 내 유류 분해균을 분리하기 위해 탄소원으로 경유와 벙커C를 이용하여 농화배양을 수행하였다. 경유 분해균 10여종, 벙커 C 분해균 6종을 분리하여 분해능 및 동정을 시도하였다. 또한 유류 분해미생물의 consortia를 분자생물학적 기법으로 분석을 시도하였다.

  • PDF

Characterization of Perchlorate-Removal Using Elemental Sulfur Granules and Activated Sludge (원소 황 입자와 활성슬러지를 이용한 퍼클로레이트 제거특성)

  • Han, Kyoung-Rim;Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.23 no.5
    • /
    • pp.676-681
    • /
    • 2013
  • Perchlorate (${ClO_4}^-$) is an emerging contaminant found in surface water and soil/groundwater. Microbial removal of perchlorate is the method of choice since perchlorate-reducing bacteria (PRB) can reduce perchlorate to harmless end-products. A previous study [3] showed experimental evidence of autotrophic perchlorate removal using elemental sulfur granules and activated sludge. The granular sulfur is a relatively inexpensive electron donor, and activated sludge is easily available from a wastewater treatment plant. A batch test was performed in this study to further investigate the effect of various environmental parameters on the perchlorate degradation by sludge microorganisms when elemental sulfur was used as electron donor. Results of the batch test suggest optimum conditions for autotrophic perchlorate degradation by sludge microorganisms. The results also show that sulfur-oxidizing PRB enriched from activated sludge removed perchlorate better than activated sludge. Taken together, this study suggests that autotrophic perchlorate removal using elemental sulfur and activated sludge can be improved by employing optimized environmental conditions and enrichment culture.

Characterization of Hexane Biodegradation by Rhodococcus sp. EH741 (Rhodococcus sp. EH741에 의한 Hexane 생분해 특성)

  • Lee, Eun-Hee;Cho, Kyung-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • As a strain EH741, having an excellent hexane degradability, was isolated from bacterial consortium using hexane as a sole carbon and energy source. EH741 was identified as a Rhodococcus sp. and the addition of a surfactant Pluronic F68(PF68), for increasing hexane solubility couldn't enhance the specific growth rate of the isolate EH741 n the mineral salt medium supplemented with hexane as a sole carbon source(hexane-BH medium). In the hexane-BH medium, the maximum specific growth rate(${\mu}_{max}$) of this strain was $0.04h^{-1}$, and the maximum hexane degradation rate($V_{max}$) and saturation constant($K_s$) were$161{\mu}mol{\cdot}g-DCW^{-1}{\cdot}h^{-1}$ and 10.5 mM, respectively. Rhodococcus sp. EH741 was one of excellent microorgamisms for hexane biodegradation processes.

Biodegradation of the Commercial Phenoxy Herbicide 2,4-D by Microbial Consortium (미생물 컨소시엄에 의한 시판 페녹시계 제초제 2,4-D의 생물분해)

  • 오계헌;김용석
    • KSBB Journal
    • /
    • v.9 no.5
    • /
    • pp.469-474
    • /
    • 1994
  • The purpose of the work was to evaluate the feasibility of a biological treatment process for the phenoxy alkanoic herbicide 2,4-D(2,4-dichlorophenoxyacetic acid) as a commercial pesticide. The phenoxy herbicide was 2,4-D amine salts which contained 40%(vol/vol) 2,4-D and 60%(vol/vol) solvent. A microbial consortium has been derived by enrichment with 2,4-D. The consortium utilized 2,4-D as the sole source of carbon and energy. Optimal pH on the 2,4-D degradation was 7.0 in this experiment. As concentrations of 2,4-D were increased, the degradation by microbial consontium became inhibited. The amendment with yeast extract and ascorbic acid accelerated the degradation of 2,4-D. High performance liquid chromatography methodology was used to measure 2,4-D and it also resolved 2,4-DCP(2,4-dichlorophenol), the corresponding phenol as intermediate. Gas chromatography-mass spectrometry was used for preliminary identification of the intermediate 2,4-DCP. UV scans of spent cultures showed that the maximum absorption of 2,4-D at the wavelength of 283 nm was decreased toward the end of incubation, but the consortium displayed no detectable spectral changes or peak shifts in the UV absorbance.

  • PDF

Identification of Anaerobic Thermophilic Thermococcus Dominant in Enrichment Cultures from a Hydrothermal Vent Sediment of Tofua Arc (Tofua Arc의 열수구환경으로부터 호열성 혐기성 고세균(Thermococcus)의 농화배양 및 동정)

  • Cha, In-Tae;Kim, So-Jeong;Kim, Jong-Geol;Park, Soo-Je;Jung, Man-Young;Ju, Se-Jong;Kwon, Kae-Kyoung;Rhee, Sung-Keun
    • Korean Journal of Microbiology
    • /
    • v.48 no.1
    • /
    • pp.42-47
    • /
    • 2012
  • Hydrothermal vents (HTV) provide special environments for evolution of lives independent on solar energy. HTV samples were gained from Tofua arc trench in Tonga, South Pacific. We investigated archaeal diversity enriched using combinations of various electron donors (yeast extract and $H_2$) and electron acceptors [Iron (III), elemental sulfur ($S^0$) and nitrate. PCR amplification was performed to detect archaeal 16S rRNA genes after the cultures were incubated $65^{\circ}C$ and $80^{\circ}C$ for 2 weeks. The cultures showing archaeal growth were transferred using the dilution-to-extinction method. 16S rRNA gene PCR-Denaturing Gradient Gel Electrophoresis was used to identify the enriched archaea in the highest dilutions where archaeal growth was observed. Most of cultured archaea belonged to genus of Thermococcus (T. alcaliphilius, T. litoralis, T. celer, T. barossii, T. thoreducens, T. coalescens) with 98-99% 16S rRNA gene similarities. Interestingly, archaeal growth was observed in the cultures with Iron (III) and nitrate as an electron acceptor. It was supposed that archaea might use the elemental sulfur generated from oxidation of the reducing agent, sulfide. To cultivate diverse archaea excluding Thermococcus, it would be required to use other reducing agents instead of sulfide.

Characterization of an Aniline-degrading Bacterium, Delftia sp. JK-2 Isolated from Activated Sludge of Municipal Sewage Treatment Plant (도시폐수처리장의 활성슬러지에서 분리한 Aniline 분해세균 Delftia sp. JK-2의 특성연구)

  • 조윤석;강형일;장효원;오계현
    • Korean Journal of Microbiology
    • /
    • v.36 no.2
    • /
    • pp.79-83
    • /
    • 2000
  • Activated sludge samples were collected from a municipal sewage treatment plant and used for enrichment of microbial consortia with aniline as the sole carbon and nitrogen source. Threc aniline-degrading bacteria were obtained lrom microbial consortia and an isolate which has excellent aniline degradability was selected for this study. The isolate was Gram-negative, and identified and designated as Delfha sp. JK-2 on the basis of various physiological and biochemical tests. 10 mM aniline was completely degraded within 24 hours after inoculation of the culture. Ammonium ion was liberated in the medium transiently during the incubation and disappeared when aniline was completely degraded. Addition of glucose as a supplementary source to aniline minimal media showed significant decrease in aniline degradat~on rate for the strain Effective degradation of aniline was achieved by the addition of 0.5% nitrate as a nitrogen source, and resulted in approximately 80% higher aniline degradation compared to the absence of nitrate. Phylogenetic analysis based on 16s [DNA sequence revealed that the strain was closely related to De@ia acidovorans, with 96% overall similarity. The 16s [DNA sequence of JK-2 was also found to be closely related to those of six other clonal types, including Acidovoru, Aquaspirillum. Xylophilus, Variovorm, and Rhodofernr.

  • PDF