• Title/Summary/Keyword: 농축슬러지

Search Result 86, Processing Time 0.036 seconds

A kinetic study of steam gasification of sewage sludge (하수슬러지 촤의 수증기 가스화반응특성)

  • 장용원;송병호
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.05a
    • /
    • pp.239-244
    • /
    • 2002
  • 하수슬러지는 산업의 발달 및 인구의 증가로 인하여 증가하는 폐수의 양에 비례하여 증가하고 있다. 폐수 처리량과 함께 슬러지의 발생량은 1997년 이후 매년 3% 이상의 증가를 보이고 있다. 특히 최근에는 수질환경 개선 사업의 확대로 인하여 하수처리장이나 폐수처리장의 처리 용량은 매련 증가하고 있으며, 농축산 산업의 발달로 농촌지역의 농수산 폐수처리장의 시설용량의 증가로 슬러지 발생량 증가는 가속되어 2005년에는 연간 1000만톤 이상이 발생할 것으로 예측되고 있다.(중략)

  • PDF

Improvement of the Thickening Characteristics of Activated Sludge by Electroflotation (EF) (전해부상을 이용한 활성슬러지의 농축효율 향상)

  • Choi, Young Gyun;Chung, Tai Hak;Yeom, Ick Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.295-300
    • /
    • 2005
  • The performances of electroflotation (EF) on the thickening of activated sludge were investigated using laboratory scale batch flotation reactors. Four activated sludges including bulking sludges were tested. After 30minutes of EF operation, 57-84 % of sludge volume reduction could be achieved by EF, while only about 1.5-14% could be obtained by gravity thickening for the same period. After thickening the effluent water quality in terms of TCOD, SS, and turbidity was improved by EF operation for all sludge samples. It is induced that the air bubbles entrapped in the thickened sludge play a key role in the observed improvement of sludge thickening and effluent quality.

Determination of Ultimate Biodegradability and Multiple Decay Rate Coefficients in Anaerobic Batch Degradation of Organic Wastes (유기성폐기물의 회분식 혐기성 최종생분해도와 다중분해속도 해석)

  • Kang, Ho;Shin, Kyung-Suk;Richards, Brian
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.555-561
    • /
    • 2005
  • A new graphical method was developed to separate two distinctive decay rate coefficients($k_1$ and $k_2$) at their respective degradable substrate fractions($S_1 and $S_2$). The mesophilic batch reactor showed $k_1$ of $0.151\;day^{-1}$ for wasted activated sludge(WAS), $0.123\;day^{-1}$ for thickened sludge(T-S), $0.248{\sim}0.358\;day^{-1}$ at S/I ratio of $1{\sim}3$ for sorghum and $0.155{\sim}0.209\;day^{-1}$ at S/I ratio $0.2{\sim}1.0$ for swine waste, whereas their long term batch decay rate coefficients($k_2$) were $0.021\;day^{-1}$, $0.001\;day^{-1}$, $0.03\;day^{-1}$ and $0.04\;day^{-1}$ respectively. At least an order of magnitude difference between $k_1$ and $k_2$ was routinely observed in the batch tests. The portion of $S_1$, which degrades with each $k_1$ appeared 71% for WAS, 39% for T-S, 90% for sorghum, and $84{\sim}91%$ at S/I ratio of $0.2{\sim}1.0$ for swine waste. Ultimate biodegradabilities of 50% for WAS, 40% of T-S, $82{\sim}92%$ for sorghum, and $81{\sim}89%$ for swine waste were observed.

Livestock Wastewater Treatment Using MBR/NF/RO and Application of Post-Denitrification and Air Flotation Process to Treat Excess Sludge and NF/RO Brine (MBR/NF/RO를 이용한 가축폐수처리와 후탈질/응집가압부상을 이용한 잉여슬러지 및 농축수 처리 기술)

  • Na, Yumee;Bae, Jongbok;Moon, Taehun;Hwang, Yunyoung;Lee, Yangwoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.407-414
    • /
    • 2013
  • Full scale livestock wastewater treatment plant (100 t/d) was constructed and operated to develop compact and cost effective treatment process for public plant as well as individual farm. Liquid form of livestock wastewater after belt press filter was treated through MBR/NF/RO. NF/RO brine water was mixed with livestock wastewater sludge and treated using denitrification, coagulation and air flotation process. Mixed effluent of NF/RO and air flotation meet public livestock wastewater treatment standard, BOD, T-N and T-P, 30 mg/L, 60 mg/L, 8 mg/L below, respectively. Condensed sludge of air flotation returned belt press filter. Dewatered cake contained 90% water and could be used fertilizer after mixing sawdust.

Analysis of the sludge thickening characteristics in the thickener using CFD Model (CFD를 이용한 농축조 슬러지의 유출흐름특성 해석)

  • Park, No-Suk;Moon, Yong-Taik;Kim, Byung-Goon;Kim, Hong-Suck
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.777-782
    • /
    • 2011
  • The residual treatment facilities in WTP(water treatment plant) play an important role in solid-liquid separation. At present, it is difficult to solve problems related with thickening and dewatering of WTP sludge, and discharging waste water to river. The quantity of residuals generated from water treatment plants depends upon the raw water quality, dosage of chemicals used, performance of the treatment process, method of sludge removal, efficiency of sedimentation, and backwashing frequency. Sludge production by the physical separation of SS(Suspended Solid) occurs under quiescent conditions in the primary clarifier, where SSs are allowed to settle and to consolidate on the clarifier bottom. Raw primary sludge results when the settled solids are hydraulically removed from the tank. In this study, Drawing characteristics of the sludge thickening in the thickener of Water Treatment Plants was simulated by Using CFD(Computational Fluid Dynamics.

The Aeration to Improve Manganese and Chloroform of Effluent at Sludge Thickener of the Conventional Water Treatment Plant (정수장 슬러지 폭기가 방류수 망간 및 클로로포름에 미치는 영향)

  • Choi, Ilgyung;Beak, Inho;Jeong, Chanwoo;Lee, Sungjin;Park, Jungwook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.113-118
    • /
    • 2014
  • So many nationwide drinking water treatment plants are under much difficulties by new reinforced discharged effluent standards. Generally, the sludge at thickener should be retended for a long time during usual days. Sometime, the soluble manganese and chloroform may be formed under the anaerobic condition in the sludge thickener when the sludge retention time is longer with low turbidity. This phenomenon results in difficulties to keep regulatory level of the discharged effluent. It was necessary to improve the operation conditions and process itself in order to meet water quality standard recently reinforced. For an effort to overcome the problems, a sludge aeration was successfully implemented into the thickening process. Sludge aeration prevent particle oxidated Manganese eluting soluble de-oxidated Manganese, excrete formated Chloroform from effluent to air, and improve sludge settling through homogenized sludge particle. We aerated sludge at the conventional water treatment plant, measured Manganese and Chloroform of clarified water at upper sludge, and solid-fluid interface height of sludge in mass cylinder. As a result, contaminant's concentrations of the final effluent was much decreased : 41% of manganese, approximately 62% of chloroform and 35% of sludge volume, compared with non-aeration sludge.

A Study of the Improvement in an Anaerobic Digester for Sludge Reduction (슬러지 저감을 위한 혐기성 소화조 개선에 관한 연구)

  • Kim, Hong-Seok;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.516-522
    • /
    • 2011
  • The largest problem of domestic anaerobic digestion is low digestion efficiency. Reasons of the problem would be low organic matters input, low mixing efficiency in digestion tank, refractory excess sludge etc.. In this study, screw attached disk-type concentration system and a mechanical mixing system, solubilization facility improvements were performed to solve problems. Through these improvements, the sludge conc. of the concentrator increased 2.6-fold and the volume reduction efficiency was increased 3.0-fold. In addition, the dead-space is reduced by mechanical agitation. Anaerobic digester gas production in the digestion tank is increased from $193.8m^3$ to $386.0m^3$ per day. Digestion efficiency is improved to 54.6% from 47.6%. Digestion gas production is increased from $0.30Nm^3/kg$ VS to $0.42Nm^3/kg$ VS.

Sludge Cleaning in the Sump of Nuclear Power Plants Using a Mobile Robot (이동로봇을 이용한 원자력발전소 Sump 내 슬러지 제거)

  • Kim, Chang-Hoi;Shin, Ho-Cheol;Seo, Yong-Chil;Jeong, Kyung-Min
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1823_1824
    • /
    • 2009
  • 원자력 발전소 운전과정에서 발생하는 각종 폐액은 저장/여과 과정을 거치게 된다. 이러한 폐액의 저장/여과 과정에서 탱크 내에 침적된 방사성 슬러지들은 농축 고화 처리가 요구 되며 방사선량에 따라 작업자의 접근이 제한적이다. 본 논문에서는 탱크나 섬프(Sump)내의 방사성 슬러지를 제거하기 위하여 개발 중인 로봇의 기능과 이를 이용한 슬러지 제거 기초실험 결과를 제시한다.

  • PDF