• 제목/요약/키워드: 논문 분류

검색결과 12,592건 처리시간 0.037초

한글 문자의 서체 분류

  • 김삼수;김수형
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.113-118
    • /
    • 2002
  • 본 논문에서는 한글 문자의 세리프(serif) 계열과 산세리프(sans-serif) 계열의 분류를 위한 특징을 제안한다. 한글의 서체는 세로획의 시작 부분에 장식 세리프(돌기)가 있는 세리프 계열과 그렇지 않은 산세리프 계열로 나눌 수 있다. 제안하는 한글 문자의 서체 분류 방법은 세리프 형태에서 추출한 특징을 이용하여 세리프 또는 산세리프 클래스로 분류하고, 각 클래스별로 적합한 특징 및 분류기를 학습하여 보다 다양한 서체를 인식하도록 계층적으로 설계한다. 제안한 특징의 유용성을 입증하기 위한 실험은 명조, 바탕, 궁서, 고딕, 돋움, 굴림 서체의 3,000개 낱자 영상에 적용하였다.

  • PDF

SVM 학습을 이용한 다중 클래스 뉴스그룹 문서 분류 (Classification of Multiclass Newsgroup Documents Using SVM Learning)

  • 오장민;장병탁;김영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.60-62
    • /
    • 1999
  • 다중 클래스 문서분류는 주어진 여러 개의 관심사별로 문서를 선별해 주는 문제이다. 문서 분류 문제의 특징은 문서가 매우 높은 차원으로 표현된다는 것이다. 다른 학습 알고리즘에 비해 SVM 알고리즘은 차원을 전혀 줄이지 않고 문제를 해결한다. 본 논문에서는 SVM 학습 알고리즘을 이용하여 대규모의 뉴스 그룹 문서 분류 문제를 다룬다. 다중 클래스 문서 분류를 위해서 각 클래스에 대한 SVM학습 결과를 효과적으로 결합하였으며 실험을 통하여 SVM과 다른 학습 알고리즘과의 성능을 비교하였다.

  • PDF

웹문서분류체계의 설계 (Design for the System of Web Document Classification)

  • 남영준
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 1998년도 제5회 학술대회 논문집
    • /
    • pp.183-188
    • /
    • 1998
  • 인터넷에 존재하는 웹 문서와 사이트들은 충분히 학술적 가치를 갖고 있기 때문에 중요한 정보원으로 간주된다. 도서관은 이 새로운 정보원을 대상으로 도서관 이용자를 위한 새로운 검색기법과 관리기법을 개발할 필요가 증대되었다. 왜냐하면 현재 웹 검색 엔진에서 제공하는 분류체계는 도서관학적 관점에서 개발되지도 않았으며 또한 웹 검색엔진간 분류체계의 설계원칙도 없기 때문이다. 본 논문에서는 이점에 착안하여 웹문서를 효율적으로 검색할 수 있는 실험적인 새로운 웹 문서분류체계를 설계하였다. 설계는 해당 분류항목과 연관된 웹 문서의 수와 접속비율에 근거하였으며, 설계의 수준은 1차적으로 류·강 항목까지 제한하였다.

  • PDF

조선총독부도서관분류표에 관한 연구 (A Study on the Chosun Government-General Library Classification)

  • 여지숙;오동근
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2004년도 제11회 학술대회 논문집
    • /
    • pp.181-186
    • /
    • 2004
  • 이 논문은 조선총독부도서관이 사용한 분류표에 대한 것으로, 먼저 이 분류표에 대한 편찬경위 및 특징에 대해서 소개하였다. 그리고 관련 있는 분류표와의 비교분석을 통해 조선총독부도서관분류표와 영향관계를 밝혀 보았다.

  • PDF

생체 신호의 특징 추출 및 SVM을 이용한 분류 (Feature Extraction and Classification using SVM for Biomedical Signal)

  • 김만선;이상용
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.181-183
    • /
    • 2003
  • 최근 대용량의 데이터베이스로부터 유용한 정보를 발견하고 데이터간에 존재하는 연관성을 탐색하고 분석하는 데이터 마이닝에 관한 많은 연구들이 진행되고 있다. 다양한 생체 신호를 분석하기 위하여 데이터 마이닝 기법을 이용할 수 있다. 본 논문에서는 심전도 신호의 패턴을 분류하기 위하여 신경망 기법을 적용하였다. 최근 패턴분류에 있어서 각광을 받고 있는 SVM 모델은 학습과정에서 얻어진 확률분포를 이용하여 의사결정함수를 추정한 후 이 함수에 따라 새로운 데이터를 이원분류 하는 것으로 분류 문제에 있어서 일반화 기능이 매우 높다. 기존에 많이 이용되던 BP 모델과 비교평가 하였다.

  • PDF

통계적 특징 및 템플리트 기반의 계층적 부품 분류 시스템 (Hierarchical Part Classification System based on Statistical Characteristic and Template)

  • 이영길;안성규;곽병덕;정성환
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 1998년도 추계학술발표논문집
    • /
    • pp.278-281
    • /
    • 1998
  • 본 논문에서는 다양한 모양의 부품 영상을 CCD카메라로 입력 받아 부품 영상에 포함된 부품의 내용 정보를 이용하여 부품을 분류하는 계층적 부품 분류 시스템을 구현하였다. 제안된 시스템은 부품 영상에 대해서 통계적 방법과 템플리트를 계층적으로 적용하여 부품을 분류하는 시스템이다. 2,000개의 부품 영상을 이용하여 실험한 결과, 84%의 분류율을 보였다.

  • PDF

근사적 클러스터링에 의한 다중 전극 활동 전위 분류 (Multi-electrode Spike Sorting by Approximate Clustering)

  • 안종훈
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (C)
    • /
    • pp.346-351
    • /
    • 2007
  • 다중 전극으로 측정한 활동 전위의 분류(Multi-electrode spike sorting)는 단일 전극(single-electrode)보다 더 정확한 결과를 보여준다. 그러나 다중 전극에서 주어지는 활동 전위 크기들의 클러스터는 일반적으로 분류하기 쉴지 않은 문제이다. 이 논문에서는 고전적인 클러스터링 알고리듬 중의 하나인 Mountain method를 수정하여 다중 전극 활동전위의 분류에 적합한 알고리듬을 제안한다. 통상적인 데이터 클러스터링이 아닌 공간 분할을 통해 신경 데이터의 다양한 클러스터에 대해서 적응도가 높아지고 빠른 분류를 하게 된다.

  • PDF

웨이브렛 변환을 이용한 음성신호의 유성음/무성음/묵음 분류 (Voiced/Unvoiced/Silence Classification of Speech Signal Using Wavelet Transform)

  • 손영호
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.449-453
    • /
    • 1998
  • 일반적으로 음성신호는 파형의 특성에 따라 파형이 준주기적인 유성음과 주기성 없이 잡음과 유사한 무성음 그리고 배경 잡음에 해당하는 묵음의 세 종류로 분류된다. 기존의 유성음/무성음/묵음 분류 방법에서는 피치정보, 에너지 및 영교차율 등이 분류를 위한 파라미터로 널리 사용되었다. 본 논문에서는 음성신호를 웨이브렛 변환한 신호에서 스펙트럼상에서이 변화를 파라미터로 하는 유성음/무성음/묵음 분류 알고리즘을 제안하고 제안된 알고리즘으로 검출한 결과와 이에 따른 문제점을 검토하였다.

  • PDF

표준 통계 분류 코드 자동 생성 (Automatic Generation of Standard Classification Code)

  • 임희석
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2006년도 춘계학술발표논문집
    • /
    • pp.388-390
    • /
    • 2006
  • 본 논문은 수동 코드 분류 규칙과 예제기반의 자동 학습을 이용하는 한국어 표준 산업/직업 코드 자동분류 시스템을 제안한다. 제안된 시스템은 산업과 직업에 대하여 설명하는 자연어를 입력받아 해당 산업/직업 분류 코드를 생성하는 시스템으로 수작업으로 구축된 규칙을 적용한 후 규칙이 적용되지 않는 레코드는 예제 기반의 학습을 이용한 자동 분류 시스템에 의해서 해당 코드를 할당한다.

  • PDF

어휘정보와 통사정보를 모두 이용한 문서분류 (Text Categorization Using Both Lexical Information and Syntactic Information)

  • 박성배;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.37-39
    • /
    • 2001
  • 현재 이용가능한 대부분의 자동문서분류 시스템의 가장 큰 문제는 문서에 포함된 단어 사이의 통사 정보는 무시한 채, 각 단어의 분포만 고려한다는 점이다. 하지만, 통사 정보도 문서 분류를 위해 매우 중요한 정보 중의 하나이다. 본 논문에서는 문서에 나타난 어휘 정보와 함께 통사 정보를 함께 고려하는 자동문서분류 방법을 제시한다. Reuters-21578 말뭉치에 대한 문서분류 실험결과 제시된 방법은 어휘정보만 사용하는 방법과 통사정보만 사용하는 방법 모두보다 높은 성능을 보인다 이 말뭉치에 대해서, 어휘정보만으로 학습된 Support Vector Machine으로 약 77%의 매우 높은 정확도를 얻을 수 있음에도 약 0.63%의 추가적인 성능 향상이 있었다.

  • PDF