Annual Conference on Human and Language Technology
/
2010.10a
/
pp.186-190
/
2010
본 논문은 쇼핑몰의 이용 후기 중 광고성 리뷰를 분류해 내는 방법을 제안한다. 여기서 광고성 리뷰는 주로 업체에서 작성하는 것으로 리뷰 안에 광고 내용이 포함되어 있다. 국외 연구 중에는 드물게 오피니언 스팸 문서의 분류 연구가 진행되고 있지만 한국어 상품평으로부터 광고성 리뷰를 분류하는 연구는 아직 이루어지지 않고 있다. 본 논문에서는 Naive Bayes Classifier를 활용하여 광고성 리뷰를 분류하였다. 이때 확률 계산을 위해 사용된 특징 단어는 POS-Tagging+Bigram, POS-Tagging+Unigram, Bigram을 사용하여 추출하였다. 실험 결과는 POS-Tagging+Bigram 방법을 이용하였을 때 광고성 리뷰의 F-Measure가 80.35%로 정확도 높았다.
본 논문에서는 스마트폰 내장 가속도 센서를 이용한 2단계 행위 인식 시스템을 제안한다. 제안하는 행위 인식 시스템에서는 행위 별 시간에 따른 가속도 센서 데이터의 변화 패턴을 충분히 반영하기 위해, 1단계 분류에서는 결정트리 모델 학습과 분류를 수행하고, 2단계 분류에서는 1단계 분류 결과들의 시퀀스를 이용하여 HMM모델 학습과 분류를 수행하였다. 또한, 본 논문에서는 특정 사용자나 스마트폰의 특정 위치, 방향 변화에도 견고한 행위 인식을 위하여, 동일한 행위에 대해 사용자와 스마트폰의 위치, 방향을 변경하면서 다양한 훈련 데이터를 수집하였다. 6720개의 가속도 센서 데이터를 이용하여 총 6가지 실내 행위들을 인식하기 위한 실험들을 수행하였고, 그 결과 높은 인식 성능을 확인 할 수 있었다.
Journal of the Institute of Convergence Signal Processing
/
v.21
no.4
/
pp.154-161
/
2020
This paper presented the basics of using a sorting system to reduce human effort and increase accuracy. The proposed system has consisted of a camera, motors, and a Raspberry Pi. This system can classify the apples as immature, mature, ripe condtion, and etc. In this experiment, 100 apples were randomly selected by purchasing various apples from a local market. The accuracy percentage was 95% and processing time was about 8 seconds per each apple. The proposed system could be useful to reduce labor.
In this paper, to solve the large dataset problem, we collect images through an image collection method called web crawling and build datasets for use in image classification models through a data preprocessing process. We also propose a lightweight model that can automatically classify images by adding category values by incorporating transfer learning into the image classification model and an image classification model that reduces training time and achieves high accuracy.
본 논문에서는 딥러닝의 CNN(Convolution Neural Network) 학습을 통하여 악성코드를 실행시키지 않고서 악성코드 변종을 패밀리 그룹으로 분류하는 방법을 연구한다. 먼저 데이터 전처리를 통해 3가지의 서로 다른 방법으로 악성코드 이미지와 메타데이터를 생성하고 이를 CNN으로 학습시킨다. 첫째, 악성코드의 byte 파일을 8비트 gray-scale 이미지로 시각화하는 방법이다. 둘째, 악성코드 asm 파일의 opcode sequence 정보를 추출하고 이를 이미지로 변환하는 방법이다. 셋째, 악성코드 이미지와 메타데이터를 결합하여 분류에 적용하는 방법이다. 이미지 특징 추출을 위해서는 본고에서 제안한 CNN을 통한 학습 방식과 더불어 3개의 Pre-trained된 CNN 모델을 (InceptionV3, Densnet, Resnet-50) 사용하여 전이학습을 진행한다. 전이학습 시에는 마지막 분류 레이어층에서 본 논문에서 선택한 데이터셋에 대해서만 학습하도록 파인튜닝하였다. 결과적으로 가공된 악성코드 데이터를 적용하여 9개의 악성코드 패밀리로 분류하고 예측 정확도를 측정해 비교 분석한다.
본 논문은 정확하면서도 효율적인 한국어 문장 분류 기법에 대해서 논의한다. 최근 자연어처리 분야에서 사전 학습된 언어 모델(Pre-trained Language Models, PLM)은 미세조정(fine-tuning)을 통해 문장 분류 하위 작업(downstream task)에서 성공적인 결과를 보여주고 있다. 하지만, 이러한 미세조정은 하위 작업이 바뀔 때마다 사전 학습된 언어 모델의 전체 매개변수(model parameters)를 학습해야 한다는 단점을 갖고 있다. 본 논문에서는 이러한 문제를 해결할 수 있도록 도메인 적응기(domain adapter)를 활용한 한국어 문장 분류 프레임워크인 DAKS(Domain Adaptation-based Korean Sentence classification framework)를 제안한다. 해당 프레임워크는 학습되는 매개변수의 규모를 크게 줄임으로써 효율적인 성능을 보였다. 또한 문장 분류를 위한 특징(feature)으로써 한국어 사전학습 모델(KLUE-RoBERTa)의 다양한 은닉 계층 별 은닉 상태(hidden states)를 활용하였을 때 결과를 비교 분석하고 가장 적합한 은닉 계층을 제시한다.
이미지 내 글꼴을 파악하는 것은 디자인 자료 제작, 저작권 확인 등 다양한 곳에서 중요한 문제이다. 하지만 이미지 내 한글 글꼴을 자동으로 식별하는 시스템은 아직 존재하지 않으며, 수동으로 한글 글꼴을 파악하는 것은 시간과 정확도 측면에서 매우 비효율적이다. 따라서 본 논문에서는 이미지 내 한글 글꼴을 자동으로 인식하는 시스템을 개발한다. 본 논문에서 개발한 시스템은 크게 두 가지 기법을 사용한다: (1) 한글의 기하학적인 특성을 활용하여 글자 단위로 텍스트를 인식하며, (2) 단어가 아닌 글자 단위로 글꼴을 분류하고 각 글자에 대한 글꼴 분류 결과를 종합하여 최종적인 글꼴 분류 결과를 얻는다. 10가지 한글 글꼴이 나타나는 직접 제작한 이미지를 사용하여 시스템의 성능을 평가한 결과 제안 방법은 비교 방법에 비해 더욱 정확히 한글 글꼴을 분류함을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.57-59
/
1999
본 논문에서는 최대 엔트로피 원리에 기반한 문서 분류기의 학습을 제안한다. 최대 엔트로피 기법은 자연언어 처리에서 언어 모델링(Language Modeling), 품사 태깅 (Part-of-Speech Tagging) 등에 널리 사용되는 방법중의 하나이다. 최대 엔트로피 모델의 효율성을 위해서는 자질 선정이 중요한데, 본 논문에서는 자질 집합의 선택을 위한 기준으로 chi-square test, log-likelihood ratio, information gain, mutual information 등의 방법을 이용하여 실험하고, 전체 후보 자질에 대한 실험 결과와 비교해 보았다. 데이터 집합으로는 Reuters-21578을 사용하였으며, 각 클래스에 대한 이진 분류 실험을 수행하였다.
Communications for Statistical Applications and Methods
/
v.2
no.2
/
pp.249-265
/
1995
본 논문에서는 확률분포가 알려져 있지 않은 두 모집단 중 어느 하나로 새로운 관측치를 분류할 때 오분류확률이 분석자에 의해 사전에 정해진 수준에 부합할 수 있도록 커널 판별함수의 임계치를 결정하였다. 정해진 오분류확률을 만족시키기 위한 판별함수의 임계치는 붓스트랩(bootstrap)기법을 판별 함수에 적용시켜 계산된다. 본 논문에서 제시도된 방법은 모집단에 대한 모수적 가정이 없으므로 어느 분포에도 적용가능하며, 모집단이 정규분포, 대수정규분포, 이산형과 연속형 변수가 혼합된 분포의 경우 모의실험을 통하여 그 성능에 대한 검증을 하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2002.11a
/
pp.315-318
/
2002
본 논문에서는 한국 미국, 유럽, 일본에서 출원된 디지털TV 기술에 관한 특허를 분석하였다. 먼저 디지털TV 기술의 분류는 대분류 4가지, 중분류 15가지, 소분류 40여가지로 하였으며, 조사 대상 특허 수는 IPC, UPC, G7에 1981년부터 2002년 4월까지 게재된 특허를 중심으로 한국 3,462건, 일본 2,358건, 유럽 1,596건, 미국 3,216건을 추출하였다. 이들 특허들에 관해 본 논문에서는 전체적인 특허 동향을 분석하고, 각국마다 대분류 및 중분류에 따른 특허 현황을 분석함으로서 국내에 취약한 기술부분을 도출하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.