• Title/Summary/Keyword: 노후터널

Search Result 32, Processing Time 0.026 seconds

Field Applicability of Scale Prevention Technologies for Drainage Holes (배수공 내 스케일 생성 방지 기술의 현장 적용성 평가)

  • Chu, Ickchan;Lee, Jonghwi;Kim, Hyungi;Kim, Kyungmin;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.45-51
    • /
    • 2012
  • The calcium hydroxide$(Ca(OH)_2)$ which is the cement hydrate flowed into the tunnel by groundwater is reacted with microorganism in the soil, carbon dioxide$(CO_2)$ and the vehicle's exhaust gas$(SO_3)$. So its by-products are precipitated at the drainage pipe and these cause the drainage clogging. By this phenomenon, Degradation of water flow at the drainage system of the tunnel occurred and also pore water pressure is increased. Hence the acceleration of seepage and degradation of lining is occurred. The purpose of this study is to evaluate the field applicability of the Quantum Stick and Magnetic treatment in prevention of scale deposits at the Namsan ${\bigcirc}{\bigcirc}$ tunnel and the Zone ${\bigcirc}{\bigcirc}{\bigcirc}$ of subway. These technologies were installed into drainpipes with their performance monitored through occasional site visits. SEM and XRD were also performed on scale collected from these drainpipes. As a result, in case which factor technology is applied, scale creation is remarkably decreased and especially Quantum Stick treatment performing better than Magnetic treatment. Therefore, additional application of Quantum Stick or Magnetic treatment to the existing drainage is expected to decrease the drainage clogging of the drainage.

Development of Crack Detection System for Highway Tunnels using Imaging Device and Deep Learning (영상장비와 딥러닝을 이용한 고속도로 터널 균열 탐지 시스템 개발)

  • Kim, Byung-Hyun;Cho, Soo-Jin;Chae, Hong-Je;Kim, Hong-Ki;Kang, Jong-Ha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.65-74
    • /
    • 2021
  • In order to efficiently inspect rapidly increasing old tunnels in many well-developed countries, many inspection methodologies have been proposed using imaging equipment and image processing. However, most of the existing methodologies evaluated their performance on a clean concrete surface with a limited area where other objects do not exist. Therefore, this paper proposes a 6-step framework for tunnel crack detection deep learning model development. The proposed method is mainly based on negative sample (non-crack object) training and Cascade Mask R-CNN. The proposed framework consists of six steps: searching for cracks in images captured from real tunnels, labeling cracks in pixel level, training a deep learning model, collecting non-crack objects, retraining the deep learning model with the collected non-crack objects, and constructing final training dataset. To implement the proposed framework, Cascade Mask R-CNN, an instance segmentation model, was trained with 1561 general crack images and 206 non-crack images. In order to examine the applicability of the trained model to the real-world tunnel crack detection, field testing is conducted on tunnel spans with a length of about 200m where electric wires and lights are prevalent. In the experimental result, the trained model showed 99% precision and 92% recall, which shows the excellent field applicability of the proposed framework.

A Study on Frequency and Time Domain Interpretation for Safety Evaluation of old Concrete Structure (노후된 콘크리트 구조물의 안전도 평가를 위한 초음파기법의 주파수 및 시간영역 해석에 관한 연구)

  • Suh Backsoo;Sohn Kwon-Ik
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.352-358
    • /
    • 2005
  • For non-destructive testing of concrete structures, time and frequency domain method were applied to detect cavity in underground model and pier model. To interpret the measured data, time domain method made use of tomography which was completed with first arrivaltime and inversion method. In this steady, frequency domain method using Fourier transform was tried. Maximum frequency in the frequency domain was analyzed to calculate location of cavity.

A Study on Development of the Controlled Low-Strength and High-Flowable Filling Material and Application of the Backfilling in Cavities behind the Old Tunnel Lining (고유동 충전재의 개발과 노후 터널의 배면공동 뒤채움에 관한 연구)

  • Ma, Sang-Joon;Seo, Kyoung-Won;Bae, Gyu-Jin;Ahn, Sang-Cheol;Lim, Kyung-Ha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.177-184
    • /
    • 2002
  • The most tunnel damage such as cracks or leakage which exist in tunnel lining commonly, is caused by the cavities where exist behind the tunnel lining, through the tunnel safety inspections. These cavities were analysed to affect a stability of a running-tunnel seriously. This study is on the development of the controlled low-strength and flowable filling material which is able to apply to the cavity behind the tunnel lining. The major materials of backfilling developed are a crushed sand and a stone-dust which exists as a cake-state and is a by-product obtained in the producting process of aggregate. It is conformed with the design standard to the physical characteristics of backfilling. The backfilling material developed is designed to reduce the fair amount of cement. According to the designed compound ratio, it is carried out the laboratory tests such as a compressive strength and a chemical analyses and is applied to dilapidated old tunnel for an application assessment.

Electrical resistivity characteristics for cement specimens with TiO2 according to activated carbon content (활성탄 함유량에 따른 광촉매(TiO2) 시멘트 시편의 전기비저항 특성)

  • Kong, Tae-Hyun;Lee, Jong-Won;Ye, Ji-Hun;Ahn, Jaehun;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.591-610
    • /
    • 2020
  • Concrete with activated carbon and titanium dioxide (TiO2) has been used to reduce the particulate matter (PM) in underground structures (e.g., tunnels) due to the high performance of nitrogen oxides (NOx) abatement. Damage (e.g. crack, spalling, or detachment) can be caused by the environmental and ageing effects on the surface of the particulate matter reduction concrete, installed on the tunnel lining. Therefore, it is important to evaluate the existence of spalling on the concrete surface for maintaining performance of NOx reduction. In this study, a basic research was performed for feasibility of spalling evaluation using electrical resistivity characteristics. Given the test results, the electrical resistivity was decreased as the ratios of activated carbon (0~15%) and TiO2 (0~25%) were increased for specimens. Under a dry condition, electrical resistivity of cement specimens, mixed with activated carbon and TiO2, was decreased up to 2.3 times, compared with the normal cement specimen. In addition, under saturation conditions (degree of saturation: 85~98%), electrical resistivity of cement specimens with activated carbon, was decreased up to 3.5 times, compared with the normal cement specimen. Regardless of the condition (dry or saturated), the difference of electrical resistivity values shows the range of 2.3~2.8 times between the mixing specimen (with activated carbon (15%) and TiO2 (25%)) and the normal cement specimen. This study can help to provide basic knowledge for spalling evaluation using the electrical resistivity on the surface of the particulate matter reduction concrete in tunnels.

A numerical study on the characteristics of small underground cavities in the surrounding old water supply and sewer pipeline (노후 상하수관 주변지반의 소규모 지하공동 형상 특성을 고려한 수치해석에 관한 연구)

  • An, Joon-Sang;Kang, Kyung-Nam;Song, Ki-Il;Kim, Byung-Chan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.287-303
    • /
    • 2018
  • In recent years, the occurrence of ground subsidence phenomenon is frequent in Korea. The Korean government has enacted a special law on underground safety and the law will be enforced from January 1, 2018. Under this new law, underground excavation should be assessed for underground safety impacts. After excavation construction, periodic geophysical surveys should be conducted to investigate the occurrence of underground cavities. When underground cavities were discovered, the underground safety was assessed through numerical analysis. However, it is controversial because the method of numerical modeling the discovered underground cavity is due to be established. In this study, the effect of the depth of the underground cavity from the shape of the underground cavity to the underground cavity was studied using a continuum analysis program. In this study, a method to reflect the shape of the underground cavity to the numerical modeling is presented. The relationship between the shape and depth of the underground cavity, and the factor of safety calculated by the shear strength reduction method (SSR) is presented. The results of this study are expected to form the basic data on underground safety impact assessment.

Study on Subsurface Collapse of Road Surface and Cavity Search in Urban Area (도심지 노면하부 지반함몰 및 공동탐사 사례 연구)

  • Chae, Hwi-Young
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.387-392
    • /
    • 2017
  • Recently, road cave-ins, also referred to as ground sinking, have become a problem in urban environments. Public utility facilities such as sewage pipelines, communications pipes, gas pipes, power cables, and other types of underground structures are installed below the roads. It was reported that cave-ins are caused by the aging and lack of proper maintenance of underground facilities, as well as by construction problems. A road cave-in is first initiated by the formation of cavities typically induced by the breakage of underground pipelines. The cavities then grow and reach the base of the pavement. The traffic load applied at the surface of the roads causes an abrupt plastic deformation. This type of accident can be considered as a type of disaster. A road cave-in can threaten both human safety and the economy. It may even result in the loss of human life. In the city of Seoul, efforts to prevent damage before cave-ins occur have been prioritized, through a method of discovering and repairing joints through the 3D GPR survey.

Development of 3-D Flow Model for Porous Media with Scenario-based Ground Excavation (지반굴착 시나리오 기반의 다공성 매질에 대한 3차원 유동해석모델 구축)

  • Cha, Jang-Hwan;Lee, Jae-Young;Kim, Woo-Seok
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • In recent years, ground subsidence has been frequently occurred by underground cavities due to the excessive groundwater inflow, caused by poor construction and management, during tunnel excavation and underground structure construction. In this study, a numerical model (SEEFLOW3D) was developed to estimate groundwater fluctuations for saturated-unsaturated poros media, evaluates the impact on ground excavation with open cut and non-open cut scenarios. In addition, the visual MODFLOW was applied to demonstrate the verification of the model compared with both results. Our results indicated that the RMSE and NRMSE was obtained to range over -3.95~5.7% and 0.56~4.62%, respectively. The developed model was expected to estimate groundwater discharges and apply analysis tool for optimum design of waterproof wall in future.

A Study on the Selection of Starting Year for the Management of Aging Commercial Trucks by Using Automobile Inspection Data (자동차 검사 자료를 이용한 사업용 화물자동차 차령 관리 시작 년도 선정에 관한 연구)

  • Lee, Seungjun;Kwon, Cheolwoo;Lee, Choulki;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.1-14
    • /
    • 2019
  • In order to minimize problems related to the performance and safety of automobiles, the "Age Limit for Vehicles System" which restricts the age of buses, taxis, and trucks, was implemented in 1973. This contributed to the reduction of accidents and increase of user's service satisfaction. However, the restriction system for trucks was abolished in August 1997 as it was deemed restrictive to economic growth. It is found that one of main causes of traffic accidents such as Changwon Tunnel accident occurred in recent years, is the aging of trucks. Thus, There is a growing need for the management of the age of trucks. In this study, the time when cargo vehicles need to be managed is suggested, by analyzing the safety of cargo vehicles using vehicles inspection data.

Mechanical Characteristics of Cementing Plane in Concrete Repair under Various Cementing Conditions (접합조건에 따른 콘크리트 접합부의 역학적 특성)

  • 김재동;정요훈
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.362-372
    • /
    • 2003
  • Since the occurrence of Portland cement, a great number of concrete structures were constructed. But the concrete structures have their own life times, which inevitably demand repairing treatments, especially on their surface parts. Currently many various methods have been developed and are being applied fer this purpose. In this study, a newly developed method using pneumatic chipping machine and anchor pin was adopted far repair of old concrete structure and the mechanical characteristics of cementing plane between existing and new concrete were tested. Comparing the removal methods for the decrepit part of existing concrete using pneumatic chipping machine and hydraulic breaker, the peak cohesion was higher when using chipping machine at the cementing plane. On the other hand, the residual cohesion was higher for the case of breaker. Step shaped chipping on the cementing plane was effective in increasing peak cohesion, which results 14% increase in the case of 30 mm step height and 22% in 50 mm height when compared with planar chipping plane. The use of anchor pin increased the residual cohesion, which restricted shear slip on the cementing plane after peak shear stress and the tensile strength of 32% compared with that of non-anchored case. According to the combined effect of step shaped chipping of 30 mm and anchor pin with an interval of 15 cm, the peak cohesion reached up to 77% and the residual cohesion showed 180% of the ones of the fresh concrete, respectively.