• Title/Summary/Keyword: 노후교량

Search Result 73, Processing Time 0.021 seconds

An Experimental Investigation on the Fatigue Strength of Replacement Repair Butt-Welded Joints of Steel Structural after a period of Prolonged Service (노후 강교량의 보수.보강 용접부의 피로강도에 대한 실험적 연구)

  • Jang, Gyeong-Ho;Choe, Ui-Hong;Lee, Jin-Hyeong;Lee, Jin-Hui;Jang, Gap-Cheol;Yang, Yeong-Jin
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.277-279
    • /
    • 2006
  • Due to the numerous environmental factors, cracks and corrosion are frequently occured especially in old steel bridge, which deteriorate the structural integrity; thus bring about the problems of structural safety of the steel bridge. Therefore, repair and reinforcement are required for the damaged structure. the replacement repair welding method is spotlighted for its brilliant features, i.e. it can be achieved without incurring traffic dislocation. the method cuts the damaged parts and replaces them with new steel plate by welding under live loads. However, the mechanical behavior of the welded joints under cyclic loads due to the traffic which passes along bridge is not clarified. In this paper, the fatigue strength of the replacement repair welded joints was investigated in order to improve reliability in the repair welded joints of old steel bridge.

  • PDF

Management System for Saemangeum Gate Bridge (배수갑문 교량의 노후도 감시시스템)

  • Lee, Joon-Gu;Cho, Young-Kwon;Kim, Han-Joung;Kim, Kwan-Ho;Kim, Myung-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.241-244
    • /
    • 2006
  • The basic prediction model was constructed to obtain optimal maintenance method for concrete structure under marine environment by exploring the mechanism of mono and combined deterioration in lab. This model was planned to be upgraded with data acquired from several exposure specimens under same environment as structures. The computer program developed to give useful guidance observer would be improved. Several repair materials and repair construction methods applied to exposure specimens will be tested for its performance of prohibit salt attack and freezing & thawing action during experimental period about ten years. All of these data could be available to complete the prediction system. The manager will be able to use the system for optimal maintenance of marine concrete structures.

  • PDF

Behavior Properties of Bridge by Non Destructive and Loading Test (비파괴 및 재하시험에 의한 노후 교량의 거동특성)

  • Min, Jeong-Ki;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.61-71
    • /
    • 2004
  • The performance evaluation and deflection of 3 spans concrete simplicity slab bridge analyzed by non-destructive and loading test. Compressive strength of slab and pier appeared in the range of each 353∼366 kgf/$cm^2$ and 152∼215 kgf/$cm^2$ in rebound number test. Also, it appeared that concrete quality of slab was good after performance improvement. The average compressive strength of slab by core picking appeared 229 kg/$cm^2$. In reinforcing bar arrangement test of span and member, it appeared that horizontal and vertical reinforcing bar was arranged to fixed interval. The value of calculation deflection that carried structural analysis with deflection analysis wave in static loading test appeared higher than that of experimental deflection and it appeared that hardness of this bridge was good. Maximum impact factor that estimated from deflection by running speed in dynamic loading test appeared by 0.216 in 10 km/hr running speed.

An Empirical Estimation Procedure of Concrete Compressive Strength Based on the In-Situ Nondestructive Tests Result of the Existing Bridges (공용중 교량 비파괴시험 결과에 기반한 경험적 콘크리트 압축강도 추정방법의 제안)

  • Oh, Hong-Seob;Oh, Kwang-Chin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.111-119
    • /
    • 2016
  • Rebound hammer test, SonReb method and concrete core test are most useful testing methods for estimate the concrete compressive strength of deteriorated concrete structures. But the accuracy of the NDE results on the existing structures could be reduced by the effects of the uncertainty of nondestructive test methods, material effects by aging and carbonation, and mechanical damage by drilling of core. In this study, empirical procedure for verifying the in-situ compressive strength of concrete is suggested through the probabilistic analysis on the 268 data of rebound and ultra-pulse velocity and core strengths obtained from 106 bridges. To enhance the accuracy of predicted concrete strength, the coefficients of core strength, and surface hardness caused by ageing or carbonation was adopted. From the results, the proposed equation by KISTEC and the estimation procedures proposed by authors is reliable than previously suggested equation and correction coefficient.

Applications of Displacement Response Estimation Algorithm Using Mode Decomposition Technique to Existing Bridges (모드분해기법을 이용한 변위응답추정 알고리즘의 실교량 적용)

  • Chang, Sung-Jin;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.257-264
    • /
    • 2010
  • Generally, estimations on the displacement as an important factor in evaluating the safety of large structures could be a barometer assessing whether the condition of the structure is deteriorating. Practically, it is not easy how to measure the displacement response to large structures like suspension bridges. In this study, as a method for estimation displacement response from strain signals, mode decomposition technique is proposed. Total displacement response is estimated by superposing quasistatic displacement response and modal displacement responses in dominant modes with larger contributions after estimating the modal displacement responses. If foiled strain gauges are used to measure strain signals, there would likely to generate electric noise, what's more, the more measuring points there are the more economic burden it could be. In order to solve such problems, fiber optic bragg-grating(FBG) sensors were used, which have multi-point measurements with no effect on electric noises. Therefore, the experiment was performed through dynamic load test of suspension bridge and plate-girder bridge to review the possibility for using mode decomposition technique.

Applications of Improved Low-Flow Mortar Type Grouting Method for Road Safety and Constructability in Dangerous Steep Slopes (급경사지 붕괴 위험지역의 도로 안전 및 시공성을 고려한 개선된 저유동 몰탈형 그라우팅공법 적용성 분석)

  • Choi, Gisung;Kim, Seokhyun;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.409-415
    • /
    • 2020
  • Low-flow mortar injection method grouting technology was selected and the traffic area was preserved as much as possible in order to secure safety for road traffic when the outflow and subsidence of landfill occurred due to ground-water, and etc. In particular, the current existing method was newly improved since there are risks of damage such as hydraulic fracturing at the lower part of the road, spilling of soil particles on steep slopes, and bumps on the road due to excessive injection pressure during construction. This study was carried out at the site of reinforcement work on the road as a maintenance work for the danger zone for collapse of the steep slope of the 00 hill, which was ordered from the 00 city 00 province. The improved low-flow mortar type grouting method adopted a new automated grouting management system and especially, it composites the method for grouting conditions decision by high-pressure pre-grouting test and injection technology by AGS-controlled and studied about grouting effect analysis by using new technology. By applying the improved low-flow mortar type grouting method, it was possible to lay the groundwork for road maintenance work such as the prevention of subsidence of old roads, uneven subsidence of buildings and civil engineering structures, and of soil leakage of ground-water spills. Furthermore, the possibility of application on future grouting work not only for just construction that prevents subsidence of old roads but also for various buildings and civil engineering structures such as railroads, subways, bridges, underground structures, and boulder stone and limestone areas was confirmed.

Multi-point Dynamic Displacement Measurements of Structures Using Digital Image Correlation Technique (Digital Image Correlation기법을 이용한 구조물의 다중 동적변위응답 측정)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.11-19
    • /
    • 2009
  • Recently, concerns relating to the maintenance of large structures have been increased. In addition, the number of large structures that need to be evaluated for their structural safety due to natural disasters and structural deterioration has been rapidly increasing. It is common for the structural characteristics of an older large structure to differ from the characteristics in the initial design stage, and changes in dynamic characteristics may result from a reduction in stiffness due to cracks on the materials. The process of deterioration of such structures enables the detection of damaged locations, as well as a quantitative evaluation. One of the typical measuring instruments used for the monitoring of bridges and buildings is the dynamic measurement system. Conventional dynamic measurement systems require considerable cabling to facilitate a direct connection between sensor and DAQ logger. For this reason, a method of measuring structural responses from a remote distance without the mounted sensors is needed. In terms of non-contact methods that are applicable to dynamic response measurement, the methods using the doppler effect of a laser or a GPS are commonly used. However, such methods could not be generally applied to bridge structures because of their costs and inaccuracies. Alternatively, a method using a visual image can be economical as well as feasible for measuring vibration signals of inaccessible bridge structures and extracting their dynamic characteristics. Many studies have been conducted using camera visual signals instead of conventional mounted sensors. However, these studies have been focused on measuring displacement response by an image processing technique after recording a position of the target mounted on the structure, in which the number of measurement targets may be limited. Therefore, in this study, a model experiment was carried out to verify the measurement algorithm for measuring multi-point displacement responses by using a DIC (Digital Image Correlation) technique.

Economic Analysis of Concrete Panel Replacement of PSC Bridge with Embedded Demountable Shear Connector (매립형 분리식 전단연결재를 적용한 PSC교 콘크리트 바닥판 교체공사의 경제성 분석)

  • Soon-Hwan, Lee;Jong-Eon, Kim;Jae-Gyu, Kim;Se-Hyun, Park;Dae-Sung, Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.376-385
    • /
    • 2022
  • The embedded demountable shear connector was developed in preparation for replacement works due to deterioration and damage to the bridge panel of the PSC girder bridge which is a road infrastructure directly related to the safety and convenience of the people. The demountable shear connector minimizes crushing works in the demolition process of the panel, and it is easy to re-construct the shear connector for replacement work. The economic feasibility of the PSC girder bridge using the embedded demountable shear connector compared to the existing construction method was analyzed from the perspective of road users (people) by calculating and comparing the cost of road users caused by traffic blocking during each construction method.

Inspection of A Deteriorated Bridge Pier Cap Using Common Nondestructive and Destructive Test (파괴 및 비파괴 검사를 이용한 노후 교량의 교각 두부 조사)

  • Kim, Tae Wan;Hong, Sung Nam;Han, Kyoung Bong;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.91-102
    • /
    • 2008
  • Nondestructive testing techniques have been historically and commonly used to evaluate the quality of existing concrete structures. The techniques utilized included visual inspection, hammer sounding, Schmidt hammer rebounding, and ultrasonic pulse velocity testing including tomographic imaging. Results of the nondestructive tests were used to determine areas to be tested with local destructive tests. These tests included concrete compressive strengths, chloride testing, and petrographic testing. The overall results indicate that inside core of each of the pier caps are healthy. On all of the pier caps, extensive exterior concrete layer rehabilitation needs to be completed. This paper shows the application and interpretation of common nondestructive testing techniques and the consequent repair, rehabilitation, maintenance decisions and safety assesment.

An Aesthetic Design Approach for the Landscape of Aqueduct Bridges (수로교 경관 개선을 위한 미학적 설계법)

  • Jeon, Geon Yeong;Kim, Namhee;Huh, Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.355-367
    • /
    • 2012
  • Many of old aqueduct bridges located in rural areas are in need of repair and redesign. They still occupy some portion of countryside landscaping. However, most of them were designed to fulfill their basic functions of carrying waters, which has not contributed to the landscape positively. Moreover, it is not rational to treat each design case of aqueduct bridges individually because they are relatively small in size and arranged continuously over a long path. Therefore, it is better to provide a design guideline to repair or to redesign old aqueduct bridges as a whole considering both structural safety and landscape. The main objective is to develop a framework to repair and redesign of old aqueduct bridges for safety improvement and better landscape. Specifically this paper will address the development of possible design alternatives for repair and redesign The development of design alternatives for redesign will follow general principle of bridge aesthetics and be represented according to structural system, flume shape, pier height, pier shape in terms of design parameters while minor repair includes paintings and other ornamentations. And the developed design alternatives will be reviewed with its landscape as a background to check the visual compatibility within the community context. It is expected that the proposed guideline will be utilized to develop a maintenance plan to revitalize old aqueduct bridges to improve overall landscape of rural areas.